Усилитель для наушников своими руками класс

Содержание
  1. Усилитель класса А для низкоомных и высокоомных наушников
  2. Содержание / Contents
  3. ↑ От Эллиотта к Мультисиму
  4. ↑ Задачи для нового наушникового усилителя
  5. ↑ Оптимизация схемы усилителя
  6. ↑ Работа схемы и некоторые нюансы
  7. ↑ Печатная плата усилителя
  8. ↑ Использованые детали
  9. ↑ Сборка усилителя
  10. ↑ Измерение характеристик
  11. ↑ Итого
  12. ↑ Файлы
  13. ↑ Немного субъективизма
  14. Камрад, рассмотри датагорские рекомендации
  15. 🌼 Полезные и проверенные железяки, можно брать
  16. Тег УНЧ для наушников
  17. Усилитель для наушников Uxi
  18. Малошумящий усилитель для наушников на ОУ
  19. Простейший ламповый усилитель для наушников с низковольтным питанием
  20. Усилитель на MOSFET транзисторах
  21. Низковольтный лампово-транзисторный усилитель для компьютерных наушников
  22. Усилитель для низкоомных наушников на ОУ
  23. Композитный усилитель для наушников на LMH6672
  24. Качественный усилитель/драйвер для наушников, с электронным регулятором громкости и баланса
  25. Зачем наушникам усилитель?
  26. Повторитель для наушников стационарный «SAQ-SHF»
  27. AudioKiller’s site
  28. Материалы раздела:
  29. Усилитель наушников в классе А с однотактным выходом
  30. Для этого усилителя наушников можно купить печатную плату.
  31. Концепция усилителя наушников
  32. Принципиальная схема усилителя наушников
  33. Параметры усилителя
  34. Плата усилителя наушников
  35. Блок питания

Усилитель класса А для низкоомных и высокоомных наушников

Содержание / Contents

↑ От Эллиотта к Мультисиму

Это второй собранный мною усилитель для наушников, о первом я писал здесь: Мощный усилитель для наушников. Не могу сказать, что усилитель многоуважаемого Рода Эллиотта чем то меня не устраивал. Исправно работал как с наушниками любого сопротивления, так и с АС (мои старенькие Microlab SOLO2 играли приятно и чисто, но не громко), не выдавал абсолютно никакого фона, абсолютно не грелся. Но захотелось мне чего-то большего, сам не знаю чего, если честно.
Решил «поиграться» с уже знакомой схемой в программе эмуляторе электрических схем – NI Multisim от National Instruments Electronics.

Читайте также:  Своими руками подать объявление

↑ Задачи для нового наушникового усилителя

Начал с того что поставил сам себе следующее тех. задание на разработку будущего усилителя:

  • непременно должен работать в классе А;
  • должен работать с нагрузками от 32 до 600 Ом (диапазон сопротивлений общедоступных наушников);
  • должен выдавать не менее 5 мВт мощности при любой нагрузке (более чем достаточная громкость, моим наушникам хватает 2 мВт);
  • не должен «фонить» (фон в наушниках раздражает ужасно);
  • должен состоять из широко распространённых, доступных деталей;
  • рассеиваемая мощность не должна превышать 3 Вт для одного канала;
  • плата должна быть размером 90х110 мм.

Два последних требования обусловлены тем, что новый усилитель должен был занять своё место на уже готовом шасси, в уже готовом закрытом корпусе, без какой либо вентиляции (ну не люблю я «дырявые» стенки корпусов).

↑ Оптимизация схемы усилителя

После знакомства с интерфейсом Multisim, накидал схему Р. Эллиотта, симулятор выдал ровно то, что я собственными глазами видел на экране реального осциллографа. Понял, что симулятор с достаточной точностью строит модель реальной схемы, с учётом не идеальности применённой элементной базы – очень хорошо!

Переделке, главным образом подвергся выходной каскад усилителя. Нужно было увеличить напряжение смещения транзисторов, загнав тем самым каскад глубже в класс А. Изучив теорию, понял, что есть два основных способа: с помощью диодов/светодиодов или транзистора.
Стабилитронами, как я выяснил, этого делать не рекомендуют из-за высоких собственных шумов.
По ряду причин я выбрал светодиоды: во-первых их у меня много и разных, во-вторых они не занимают много места, и в-третьих они обеспечивают необходимое мне падение напряжения.

После испытаний в программе и подбора номиналов, согласно требованиям тех. задания, родилась следующая схема (рис.1)

Читайте также:  Тэн для батареи отопления своими руками

С учётом разброса параметров элементов, Multisim выдал следующую картину (рис.2)

Для будущего усилителя я выбрал следующую АЧХ (рис.3):

↑ Работа схемы и некоторые нюансы

↑ Печатная плата усилителя

06/10/2016 Обнаружена ошибка! В одном из каналов перепутана разводка баз выходных транзисторов.

Следует взаимно поменять подключение баз нижних по рисунку транзисторов BD140-BD139, например, доп. проводками. Нужно также поменять полярность отмеченного конденсатора и диодов.

04/11/2016 Обнаружена ошибка!

Следует изменить дорожку от плюсовой и минусовой шин к резисторам 910 Ом, как на рисунке. В архивах файл исправлен. Кто оптимизирует ПП, присылайте, прикрепим от вашего имени.

↑ Использованые детали

Потенциометр малогабаритный ALPS для печатного монтажа с логарифмической характеристикой.
Операционный усилитель LM4562 от Texas Instruments.
Транзисторы BD139-10, BD140-10 производства ST Microelectronics.
Все электролиты Low ESR от Jamicon, все плёночные конденсаторы – аналоги К73-17 от JB.
С3 и С4 (рис.1) — керамические конденсаторы (импортные NPO или наши K-10-17).
Все резисторы 0.25 Вт. В эмиттерных цепях — 1 Вт, например, С2-29, МЛТ-1 или С2-33Н-1, лучше с допуском 1%.
Светодиоды отечественные 3Л341И. Подойдут любые с падением напряжения примерно 2 В.
Радиаторы должны быть способны рассеять по 3 Вт мощности каждый.

Элементы я по номиналам не подбирал за исключением резисторов, они с допуском в 1%.

↑ Сборка усилителя

Входные и выходные сигналы можно вывести через разъёмы, вроде тех, что питают вентиляторы на материнских платах, шаг такой же. Я предпочёл просто впаять провода в плату. Питание к усилителю подводится, в моем случае, через разъем от компьютерного БП. Если такого не окажется под рукой, провода питания можно впаять непосредственно в плату.

А вот ОУ лучше не впаивать. Специальная переходная колодка не только упростит замену при выходе из строя, но также позволит определиться с наиболее предпочтительным ОУ для себя любимого.

Плёночные конденсаторы на входе усилителя подойдут практически любого типа и размера (специально отвёл место на плате). Два керамических конденсатора С3 и С4 припаиваются со стороны дорожек, чтобы быть как можно ближе к ОУ.
Радиаторы устанавливаются на транзисторы через диэлектрические теплопроводящие прокладки в конце сборки.

↑ Измерение характеристик

Так получилось, что у меня до сих пор нет сколько-нибудь приличной звуковоспроизводящей аппаратуры. Я мечтаю изготовить внешний ЦАП для ПК с автономным питанием. До живого прибора пока далеко. Поэтому, прошу прощения, характеристики усилителя я снимал с помощью встроенной в ноутбук звуковой карты Realtek. Такие измерения не претендуют на объективность, но позволяют косвенно оценить качественные характеристики изготовленного прибора.

С помощью бесплатного программного обеспечения от отечественных разработчиков Right Mark Audio Analyzer 6.3.0 я провёл несколько измерений. Суть их в следующем: я подключал выход звуковой карты на её вход напрямую, через экранированный специально изготовленный кабель с ответвлением для нагрузки в виде наушников Creative Aurvana Live (32 Ohm) и прогонял тест в RMAA.
Затем подключал к выходу звуковой карты прогретый усилитель, и уже его выход подключал ко входу звуковой карты через спец. кабель с наушниками и снимал показания.

Результаты меня приятно удивили. На рис. 7 краткая сводка теста (полная версия в архиве для скачивания в конце статьи)

↑ Итого

↑ Файлы

Схема усилителя в SPlan 7.0, печатка усилителя в Sprint Layout 6.0, модель усилителя в Multisim 12 и результаты тестов RMAA 6.3.0 в архиве.
Архив обновлён 04-11-2016 г. В архиве исправленая схема, сохранен оригинал ПП с ошибками и добавлен новый вариант ПП без ошибок, но не оптимизированый. Кто сделает лучше — пожалуйста присылайте, добавим.
▼ arhiv-v2-ipk2016.zip 393,44 Kb ⇣ 97

↑ Немного субъективизма

Этот усилитель, как мне показалось, звучит детальней и ярче моего первого усилителя. И если раньше после часа прослушивания фонограмм уши уставали и как будто наполнялись ватой, с этим усилителем такого ощущения нет – не знаю чем это объяснить. Описывать звук словами – пустое дело, нужно слушать.

Буду рад вашим комментариям, особенно содержащим конструктивную критику и замечания.
Спасибо за внимание!

Камрад, рассмотри датагорские рекомендации

🌼 Полезные и проверенные железяки, можно брать

Опробовано в лаборатории редакции или читателями.

Источник

Тег УНЧ для наушников

Усилитель мощности низкой частоты для наушников

Усилитель для наушников Uxi

Простой усилитель для наушников Uxi, на транзисторах без обратной связи.

Малошумящий усилитель для наушников на ОУ

Как говорится — все гениальное просто. Данный усилитель состоит из минимума деталей, обеспечивая сигналу прохождение через минимум элементов, и тем самым оберегая его от искажений, которые эти элементы могут внести. Усилитель имеет мощность 500мВт. Расчетный уровень искажений, при применении микросхемы на подобии OPA2134 — 0.001%. Сопротивление нагрузки 32-300 Ом.

Простейший ламповый усилитель для наушников с низковольтным питанием

В интернете сейчас огромное количество УНЧ на радиолампах. И везде нужно 3 и более трансформаторов. Трансформаторы очень дорогие и поэтому я попробовал создать ламповый УНЧ с питанием 6 (+-0.3) В

Усилитель на MOSFET транзисторах

Возможности: Контролируемый микроконтроллером предусилитель с возможность управления ИК пультом. Для сохранения параметров громкости и др. в энергозависимой памяти, есть запасное питание от батарейки. Символьный ЖК дисплей 2*16 для индикации громкости и т. д. Три универсальных линейных входа, один вход и выход для магнитофона. Стерео усилитель 70Вт на основе MOSFET транзисторов. Выход на наушники.

Автор: Шпакунов А.

Низковольтный лампово-транзисторный усилитель для компьютерных наушников

Давно хотел собрать внешний усилитель для компьютерных наушников, но как-то всё руки не доходили – то одно отвлечёт, то другое. А тут занесло меня в сторону ламповой схемотехники, и столько там нового и интересного узнал, что захотелось сразу что-нибудь самому собрать и послушать.

Усилитель для низкоомных наушников на ОУ

В связи с приобретением новой звуковой карты без выхода на наушники, у меня возникла потребность в усилителе для наушников приличного качества, способном раскачать мои любимые ТДС-4. Усилитель должен был быть компактным, простым в сборке и налаживании, с низким уровнем шумов и искажений. В итоге, собранный усилитель соответствовал всем указанным выше требованиям.

Автор: Никифоров И.

Композитный усилитель для наушников на LMH6672

Предлагаемый усилитель предназначен для использования совместно с головными телефонами с сопротивлением ≥ 25 Ом. В качестве источника звукового сигнала может служить звуковая карта ПК, CD/DVD-плееры, портативные устройства. Позволяет «разгрузить» выход источника, что положительно сказывается на качестве звука (снижение гармонических искажений, устранение «завала» на НЧ при использовании источника с разделительными конденсаторами на выходе).

Автор: Разумовский Д.

Качественный усилитель/драйвер для наушников, с электронным регулятором громкости и баланса

Данный усилитель позволяет подключать любые наушники, практически с любым существующим сопротивлением катушек благодаря очень низкому выходному сопротивлению. Это позволяет так же, не заострять внимание на АЧХ наушников. Усилитель не имеет межкаскадных конденсаторов, и как следствие меньшие искажения.

Автор: Максим Александрович

Зачем наушникам усилитель?

Итак, наушники, подключённые к посредственному усилителю, звучат лучше чем при подключении непосредственно к звуковой карте. Чтобы подтвердить это и выяснить, что происходит с аудиосигналом, были проведены измерения с помощью RMAA (Right Mark Audio Analyser). Измерялся сигнал на наушниках, т. е. посредством разветвителя сигнал шёл на наушники и на линейных вход звуковой карты.

Повторитель для наушников стационарный «SAQ-SHF»

Повторитель для наушников стационарный SAQ-SHF — это малогабаритное стационарное устройство, питающееся от бытовой сети 220В/50Гц, предназначенное для подключения к нему наушников, и подключаемое к линейным выходам бытовых аудиоустройств.

1999-2021 Сайт-ПАЯЛЬНИК ‘cxem.net’

При использовании материалов сайта, обязательна
ссылка на сайт ПАЯЛЬНИК и первоисточник

Источник

AudioKiller’s site

Audio, Hi-Fi, Hi-End. Электроника. Аудио.

Материалы раздела:

Усилитель наушников в классе А с однотактным выходом

Усилитель наушников — незаменимая вещь, если вы хотите слушать музыку на наушники в высоком качестве. Многие усилители, работающие на колонки, также имеют выход и на наушники. Но в них для работы с наушниками используется тот же самый усилитель, который используется и для колонок. Он специализирован именно для колонок, поэтому на наушники работает хуже. Кроме того, обычно в таких усилителях наушники подключаются к выходу через резистор сопротивлением порядка 100 ом. То есть выходное сопротивление такого «неправильного усилителя наушников» получается слишком высоким.

А вот если использовать специализированный усилитель для наушников, то получаем несколько преимуществ:

  1. Специализированный усилитель работает лучше и позволяет получить наилучшее качество звучания.
  2. Усилитель наушников можно сделать именно под свои наушники.
  3. Его можно использовать как отдельный блок, чтобы не гонять для наушников большой усилитель.
  4. Его можно встроить в основной усилитель для колонок как дополнительный блок, и получить максимально хорошее звучание и на колонки, и на наушники.

Для этого усилителя наушников можно купить печатную плату.

Вроде бы совсем недавно я опубликовал схему простого, но довольно приличного усилителя для наушников и пообещал сделать что-нибудь получше. Но жизнь идет слишком быстро, и времени прошло намного больше, чем я планировал. Тем не менее, я разработал и сделал очень хороший усилитель для наушников. Этот усилитель работает у меня больше года, рис. 1.

Это стационарный усилитель с питанием от сети. Самое главное в нем: этот усилитель никак не приукрашивает сигнал. На выходе имеем точь-в-точь то, что и на входе. При этом усилитель отлично работает с любыми наушниками, кроме электростатических.

По определению разница между тем, что подается на вход и тем, что получается на выходе, называется искажениями. Поэтому если искажения намного меньше порога чувствительности слуха, то мы их наверняка не слышим. И именно очень маленькие искажения усилителя позволяют мне говорить о том, что звук на выходе точно такой же, как и на входе. Это мое заявление не выдумка, или просто рекламная фраза. Это реальность, подтвержденная измерениями. То есть, этот усилитель ничего не меняет в звуке: и не ухудшает, и не приукрашивает.

Сейчас в моде аппаратура, приукрашивающая (а иногда даже искажающая) звук – стараниями аудиоизданий рекламируется дорогая аппаратура, которая иногда делается не инженерно, а «по понятиям»: без обратной связи (потому что обратная связь – это же ЗЛО!), на лампах по схемам усилителей от дешевых телевизоров 60-х годов ХХ века (потому что лампа одним только своим присутствием делает звук невероятно красивым, поэтому лампы совсем даже не обязательно включать по хорошим схемам), и т.п. Мой усилитель наушников не такой. Что в записи, то и в ушах. Если хотите приукрашенный звук – вам не сюда.

Еще одно интересное свойство усилителя: звук возникает не в центре головы, как иногда бывает при прослушивании наушников, а где-то непонятно где. Как будто по ободу наушников. Мне трудно объяснить словами свои ощущения, но они приятные, музыка не долбит мозг, а окружает тебя. Почему так получается – не знаю. Я даже не представляю причин такого эффекта, поэтому не знаю где их искать.

Концепция усилителя наушников

В усилителе используется высококачественный операционный усилитель (ОУ). Современные ОУ обладают очень хорошими свойствами: большим усилением, высокой рабочей частотой, хорошей линейностью, малыми шумами. Из-за таких качеств их и применяют. Единственным недостатком ОУ является сравнительно небольшой выходной ток: обычные ОУ не рассчитаны для работы на низкоомную нагрузку. Хотя в той старой схеме усилителя наушники подключались прямо на выход ОУ, и все работало, но такая работа хоть и не страшна для ОУ и он с ней справляется, но все же микросхема используется не совсем так, как нужно. То, что она тянет, не значит, что она работает наилучшим образом. А мы-то хотим получить самое лучшее, не так ли? И тут есть ряд вариантов:

I . Применить специальный дорогой ОУ с большим выходным током.

  1. Схема будет такая же, как и у моего усилителя на одном ОУ. Так что можно в принципе делать ту же схему на другой микросхеме.
  1. Микросхема мощного ОУ дорогая и дефицитная. Стоимость такой микросхемы может оказаться больше, чем стоимость всего этого усилителя.
  2. Такие микросхемы склонны к возбуждению. Чтобы мощный высокочастотный ОУ хорошо работал, нужно тщательно разводить печатную плату, развязывать питание, компенсировать емкость монтажа. В общем, есть шанс, что микросхема будет работать плохо, а что плохо работает – хорошо звучать не может.

II . Применить специализированную микросхему усилителя наушников, которые выпускает ряд фирм.

  1. Миниатюрность усилителя.
  2. Возможность питания от одного источника напряжением 3…5 вольт.
  1. Эти микросхемы разрабатываются специально для носимых устройств. Они могут недостаточно хорошо работать на высокоомные или низкоомные наушники. Либо на наушники с низкой чувствительностью.
  2. Качество может быть не всегда высокое, поскольку некоторые микросхемы предназначены для mp3 плееров.
  3. Даже если качество микросхемы высокое – а современные технологии позволяют получить очень хорошие микросхемы – то все равно, сравните стратегии изготовления усилителей:
    • сделать усилитель с максимально качественным звучанием.
    • сделать микросхему, которая бы максимально хорошо работала от источника питания 3 вольта.
  4. Хорошие микросхемы могут быть дефицитными и недешевыми.

III . Умощнить выход обычного ОУ.

  1. Схема усложняется, но не очень сильно, поэтому усложнение схемы нам не страшно. Кроме того, детали потребуются доступные и недорогие.
  1. Можно получить очень высокое качество звучания, так как схема выходного каскада специально разрабатывается под низкоомную нагрузку. То есть вместо универсального устройства, мы можем использовать специализированное, которое в своей области обязательно лучше универсального.
  2. Можно сделать усилитель в точности под свои наушники.

Так что вариант с умощнением выхода ОУ самый привлекательный

Схема усилителя для наушников приведена на рисунке 2. Идея схемы такова: операционный усилитель осуществляет усиление напряжения и создает глубокую отрицательную обратную связь. А ему на выход включается эмиттерный повторитель, усиливающий ток. Существуют схемы, состоящие из одного только эмиттерного повторителя, но мне они не подходят:

  • У них слишком высокая вторая гармоника. Она хоть и обеспечивает «сладкий звук», но при этом заметно приукрашивает звучание.
  • У эмиттерного повторителя слишком много высших гармоник, которые на слух плохо воспринимаются. Отчасти их забивает «красивая» вторая гармоника, но только отчасти. Поэтому качество звучания для меня получается неудовлетворительное.

В этой схеме глубокая ООС компенсирует высшие гармоники. Благодаря однотактному выходу, в спектре преобладает вторая гармоника, но все гармоники, включая и вторую намного меньше чувствительности слуха. В результате имеем:

  • отличный «правильный» спектр искажений;
  • который на самом деле не имеет значения: искажения намного меньше порога чувствительности слуха.

Можно взять исходный усилитель с плохими параметрами и пытаться линеаризовать его при помощи ООС. Тут уж как получится. Может получиться неплохо, а вот если исходный усилитель достаточно плохой, то ООС его может и не исправить, а даже ухудшить. Вот из-за таких конструкций и говорят, что ООС вредна. Другое дело, если исходный усилитель изначально имеет максимально хорошие параметры. Тогда ООС его улучшит, и результат получится замечательный. Именно такая стратегия и заложена в этот усилитель. В результате мы получаем много преимуществ:

  1. Достаточно высокое напряжение питания, что позволяет использовать самые высокоомные наушники. И при этом совершенно не бояться клиппинга.
  2. Сравнительно большой ток покоя, что позволяет использовать очень низкоомные наушники (ток покоя можно установить какой требуется).
  3. Хороший запас по выходной мощности, и большой «запас прочности» по всем параметрам.
  4. Изначально высокая линейность. А это очень важно: если исходный усилитель без отрицательной обратной связи имеет хорошую линейность, то введение ООС значительно улучшит его свойства. Если линейность исходного усилителя плохая, то бывает, что никакая ООС помочь не может — все равно звук получается невысокого качества.

На самом деле совсем не обязательно было делать выходной каскад однотактным. Есть и другие хорошие варианты, они пока ждут изготовления и проверки в реальности (в модели работают отлично). Но однотактный выходной каскад в классе А (а однотактный каскад только в нем и может работать) – это выглядит «очень по Hi-End’ному», а поскольку качество звука при этом великолепное, то вам будет чем хвастаться!

На самом деле однотактный выходной каскад применим только для маломощной нагрузки, так как реальный КПД такого каскада не более 40%. Но у нас именно такая ситуация — требуемая максимальная выходная мощность составляет десятки милливатт, так что все отлично работает. А работа выходного транзистора в классе А — необходимое условие. Потому что в таком режиме транзистор не входит в отсечку — ток через транзистор не прерывается, а протекает всегда. Часть этого тока поступает в нагрузку. Ток через транзистор нельзя прерывать (транзистор не должен закрываться) потому что нельзя прерывать ток нагрузки. Зато, работая в таком режиме, транзистор создает минимум искажений.

Принципиальная схема усилителя наушников

Итак, что и как в схеме устроено. Сам усилитель наушников стереофонический. На схеме показан только один канал — левый. Правый — точно такой же. Сдвоенный операционный усилитель работает на оба канала. Поэтому те детали, которые образуют левый канал, на печатной плате имеют в наименовании индекс L. Это означает, что для правого канала понадобится точно такой же компонент, который будет иметь индекс R. Например, R4L и R4R. Компоненты DA1, С4, С5, С6, R5, DA2, С7, С8, С9 общие для обоих каналов и используются по одной штуке на усилитель.

1. Операционный усилитель используется в инвертирующем включении. В старых ОУ такое включение повышало линейность входного дифференциального каскада. В современных ОУ происходит то же самое, но в них входные каскады очень хорошие, поэтому улучшение очень-очень маленькое и совершенно незаметное на слух. Но все же выигрыш в таком включении есть, про него позже. Резисторы R3 и R4 создают отрицательную обратную связь (ООС) и задают коэффициент усиления усилителя, равный примерно трем. Такого усиления хватает практически для любых наушников. Если все же громкости недостаточно, можно увеличить R4 до 330 кОм. Операционный усилитель типа OPA2134. Это очень хороший ОУ, предназначенный в том числе и для высококачественного аудио, и заменять его другим не рекомендуется.

2. Транзистор VT1 – выходной эмиттерный повторитель. Его нагрузка – источник тока на транзисторе VT2, в таком включении эмиттерный повторитель работает наилучшим образом. Микросхема стабилизатора DA2 задает напряжение на базе VT2, а значит его ток. Этот ток является током покоя выходного каскада, поскольку он протекает и через транзистор VT1. Более того, ток покоя транзистора VT1 жестко стабилизируется неизменным током транзистора VT2. В принципе, вместо микросхемы стабилизатора можно применить стабилитрон, но с микросхемой чуть-чуть лучше. Микросхема дешевая и доступная, так что будем делать как лучше, хоть и на самую капельку. Резистор R 5 задает ток через микросхему стабилизатора, а конденсатор С6 снижает шум и возможные пульсации напряжения. Вместо микросхемы DA2 вполне можно было бы использовать стабилитрон, но микросхема лучше за те же деньги.

3. Резистор R6 задает ток источника тока и, следовательно, ток покоя выходного каскада.

4. Конденсаторы С4, С5, С7, С8, С9 – развязывающие. Их цель не столько сгладить пульсации напряжения питания (этих пульсаций не должно быть изначально), сколько обеспечить стабильность усилителя и пропустить через себя ток нагрузки. Надо помнить, что ток нагрузки замыкается через источник питания. Поэтому, чтобы не «гонять» ток через блок питания, позволим ему замыкаться через конденсаторы, установленные на плате. Керамические конденсаторы С4, С5, С9 пропускают высокочастотные сигналы, электролитические С7 и С8 – среднечастотные. Не надо бояться того, что керамические конденсаторы нелинейные – в этом включении напряжение на них постоянно, и искажений они не создают.

5. Резистор R2 – регулятор громкости. Если он не нужен, то вместо него устанавливается перемычка, показанная пунктиром.

6. Цепь R1С1 защищает усилитель от проникновения ультразвуковых и радиочастотных помех, обрезая все частоты выше 48 кГц.

7. Конденсатор С2 защищает вход от постоянного тока и заодно обрезает частоты ниже 7 Гц, что защищает от инфразвука. Если вы хотите, чтобы завал АЧХ на частоте 20 Гц был еще меньше, используйте конденсатор емкостью 0,68 мкФ (частота среза 5 Гц), если слушаете виниловые грампластинки, то емкость С2 желательно уменьшить до 0,33 мкФ (частота среза 10 Гц).

8. Конденсатор С3 увеличивает глубину ООС на частотах выше 70 кГц. Он выполняет сразу несколько функций:

  • снижает усиление на этих частотах, следовательно уменьшает количество ультразвука — это важно, ведь усилитель наушников подает сигнал практически вам в уши. Если там будет присутствовать ультразвук — это вредно отразится на вашем здоровье;
  • повышает устойчивость усилителя;
  • улучшает переходную характеристику;
  • полностью устраняет возможность появления динамических искажений (совместно с R1С1).

9. Резистор R7 разделяет входную и выходную земли. На самом деле он не обязателен, но опять же, с ним чуть-чуть лучше.

10. Диод VD1 выполняет очень интересную функцию: позволяет увеличить максимально возможный ток в нагрузке в 1,5 раза.

Как работает диод VD1?

Транзистор VT1 включен эмиттерным повторителем, поэтому способен выдать на выход ток любой величины (в разумных пределах), даже в несколько ампер, если будет на то необходимость. Например, в случае низкоомной нагрузки. Это происходит при положительном полупериоде выходного напряжения. На отрицательном полупериоде работает транзистор VT2. А он включен источником тока, и ток больший, чем он задает, в нагрузке получить невозможно. Меньше – пожалуйста, излишек тока уйдет в транзистор VT1. Таким образом, при попытке получить в нагрузке ток большой величины, положительный полупериод мы получим довольно большой (ампер ни ампер, но четверть ампера – запросто), а вот отрицательный ток будет максимум 40 миллиампер – столько, сколько составляет ток покоя VT2. Можно конечно увеличить его ток покоя, но это увеличит его нагрев.

И тут нам помогает диод VD1. При отрицательном полупериоде выходного напряжения и в случае, если тока транзистора VT2 не хватает, диод открывается, и пропускает в нагрузку выходной ток ОУ. А это десяток-другой миллиампер. На самом деле, это ситуация критическая, ее быть не должно, так как при этом нагружается ОУ и искажения несколько растут. Пусть они и остаются небольшими и незаметными, но сам факт роста искажений неприятен. Но ведь любая критическая ситуация один раз в жизни может наступить. Например, вы изготовили усилитель для работы с нагрузкой от 64 ом и выше, а пришлось в него включить нагрузку 16 ом и установить большую громкость. Без диода усилитель бы перегружался и искажал звук. А с диодом – работает. С диодом усилитель достаточно громко работает даже на колонки сопротивлением 6 ом.

Влияние диода VD1 и рекомендации по выбору компонентов и монтажу описано в статье Усилитель наушников в классе А с однотактным выходом на промышленной плате.

В схеме усилителя ряд элементов служит для очень небольшого улучшения его свойств. Без них вполне можно было бы и обойтись. Почему я их использовал? Чтобы получить максимум качества. В рекламе Hi-End техники нам заявляют, что качество этой аппаратуры максимальное. И цены тоже максимальные. В этом усилителе я получил максимальное качество при небольшой цене. Так что это настоящий Hi-End , но за разумные деньги (на самом деле цены на Hi-End такие высокие не потому, что аппаратура на самом деле всегда имеет высокое качество, а по экономическим причинам, но это уже совсем другая история).

В схеме усилителя используется целых два элемента для борьбы с ультразвуком. Это важно! Дело в том, что в современном мире мы окружены высокочастотными излучениями. Это излучение телефонов, Wi-Fi , bluetooth, излучение через эфир и через сеть от импульсных блоков питания. Да и фильтрация частоты дискретизации ЦАПов не всегда идеальна. При проигрывании виниловых грампластинок тоже могут возникать ультразвуковые колебания, вызванные движением иглы по канавке. Ультразвук вреден для здоровья, а если он излучается наушниками непосредственно в уши… Радиочастоты наушниками не излучаются, но они могут преобразовываться в более низкие частоты, проходя через нелинейные элементы усилителя, которые на работу с такими частотами не рассчитаны. И результат такого преобразования может оказаться самым разным, он может лежать как в звуковом диапазоне (лишние неприятные призвуки), так и ультразвуковом. Также ультразвук может вызывать перегрузку усилителя по скорости нарастания выходного напряжения, а это приведет к возникновению динамических искажений. В общем, существует довольно много веских причин избавляться от сверхвысокочастотных составляющих.

Вот тут и помогает инвертирующая схема включения операционного усилителя. В этой схеме подавление ультразвука при помощи отрицательной обратной связи не ограничено, поэтому усилитель в целом образует для ультразвука полноценный и эффективный фильтр второго порядка.

Аналогично действует и входной фильтр инфранизких частот (ИНЧ). Они также вредны для организма, и могут излучаться качественными наушниками довольно сильно. Особенно много ИНЧ составляющих может возникнуть при проигрывании виниловых грампластинок, но как ни странно, они могут поступать и с ЦАПа. Так что причины оберегаться от инфразвука также существуют.

Оба этих фильтра: ультразвука и инфразвука работают довольно далеко от звукового диапазона, поэтому не влияют на звук (их влияние заведомо меньше порога чувствительности слуха). И при этом достаточно близко к звуковому диапазону, чтобы быть эффективными. Но все в ваших руках: если вы верите аудиофильской пропаганде, и считаете, что даже небольшие изменения АЧХ и ФЧХ усилителя на краях диапазона (которые меньше предела чувствительности слуха) для вас неприемлемы, то можно расширить диапазон частот как вниз по частоте, так и вверх, изменив емкости конденсаторов фильтров.

Параметры усилителя

Теперь о качестве звучания. В начале статьи я заявил, что усилитель передает на выход точь-в-точь то, что было на входе. Пришла пора доказывать это. По определению, разница между тем, что подаем на вход, и тем, что получаем на выходе, называется искажениями. Искажения делятся на два типа: линейные и нелинейные. Линейные искажения – это искажения АЧХ и ФЧХ. Я эти характеристики даже не привожу: в современных транзисторных устройствах плохие частотные и фазовые характеристики можно получить разве что преднамеренно. Нелинейные искажения связанны с нелинейностью электронных компонентов (ламп, транзисторов, микросхем), и вот их имеет смысл измерить. Итак, спектр нелинейных искажений на частоте 1 кГц показан на рисунке 3. Для измерений использована высококачественная звуковая карта ESI Juli @, работающая в режиме 24 бит, 192 кГц. Полученный спектр – это спектр системы звуковая карта + усилитель. То есть чисто усилитель чуть лучше.

Как их понимать?

  1. Коэффициент нелинейных искажений Кг (THD) равен 0,0012%. Это примерно в 10 раз меньше разрешающей способности слуха (даже по самым оптимистичным психоакустическим измерениям). То есть – мы эти нелинейные искажения наверняка не слышим.
  2. Спектр гармоник очень узкий – в нем присутствуют только вторая гармоника, которая «красиво звучит» и немного третья. Чем больше номер (порядок) гармоники, тем неприятнее она для слуха (правильнее сказать: тем более неприятные искажения создает усилитель, обладающий такими свойствами). Маленькая составляющая частотой порядка 12 кГц не является гармоникой, так как присутствует и на втором графике. Скорее всего, это какая-то помеха.

Обычно на этом и останавливаются. Но мне хотелось изучить усилитель более подробно. Поэтому вот спектр гармоник (и значение Кг) при возбуждении усилителя частотой 10 кГц (рис. 4). Это более жесткий тест – на высоких частотах усилители работают хуже, поэтому такой тест никто делать не любит. Я сделал.

В тесте учитывались частоты вплоть до 90 кГц, то есть до 9-й гармоники включительно. Но этих гармоник нет, усилитель очень линейный, видимые искажения имеют максимум 4-й порядок. А общая их величина Кг (THD) = 0,011%. Это снова намного меньше разрешающей способности слуха на этой частоте. И снова красивый (правильный) спектр искажений — чем номер гармоники выше, тем ее амплитуда меньше.

Следующий тест – интермодуляционные искажения IMD . Тест проводился в наиболее жесткой форме: на вход подавалась сумма частот 18 и 19 кГц (рис. 5). На высоких частотах искажения максимальны, так что то, что показано на рисунке – это максимум возможных искажений усилителя. IMD = 0,005%, что опять же меньше разрешающей способности слуха.

И снова обратите внимание на небольшое количество возникающих дополнительных частот около возбуждающих сигналов 18 и 19 кГц. Это свидетельствует о том, что порядок нелинейности усилителя небольшой, а значит, производимые им искажения не являются неприятными для слуха.

Итак, измерения подтверждают, что усилитель отличный и не вносит сколько-нибудь заметных искажений в сигнал. Частоты, кратные частоте 50 Гц – помехи от сети на самом деле также не слышные.

Все тесты проводились в «боевых» условиях. Был использован штатный блок питания, работали оба канала усилителя и оба канала были нагружены на сопротивление 64 ома. Выходное напряжение равно 2 вольта амплитуды. Это соответствует выходной мощности 30 мВт. В наушниках нормальной чувствительности (90…100 дБ/мВт) при такой мощности звуковое давление составит 120…130 дБ – это уже болевой порог слуха. На меньшей громкости искажения меньше.

Плата усилителя наушников

Монтажная схема специально сделана простой, чтобы этот усилитель наушников мог сделать даже начинающий, рис. 6. В ней не используются компоненты для поверхностного монтажа. Размеры платы из-за этого получились не очень маленькими, но в корпус усилителя плата великолепно становится (корпус приобретен на Али-экспресе).

Детали не дефицитные и не дорогие но для сохранения максимального качества лучше не отступать от рекомендованных комплектующих. Конденсаторы С1 и С3 керамические с ТКЕ равным НП0 (NP 0) – такие конденсаторы весьма линейны. С2 – пленочный лавсановый. Можно использовать и полипропиленовый, но разницы реально (в грамотном слепом тестировании) не заметно. Транзисторы можно на радиаторы не устанавливать, но с небольшими радиаторами их тепловой режим, особенно в корпусе, все же лучше. С6 можно использовать либо алюминиевый указанной емкости, либо танталовый 47 мкФ на 16 вольт. Конденсаторы С4, С5, С9 – керамические из диэлектрика X7R . С7 и С8 хорошо бы использовать Low ESR , но можно и обычные. Сопротивление резисторов R7 увеличивать не следует, если таких резисторов нет, то вместо них устанавливаются перемычки. При отсутствии однопроцентных резисторов, можно использовать «обычные» точностью 5%, которые крайне желательно подобрать по равенству сопротивлений в обоих каналах усилителя. Диод VD1 – любой современный кремниевый высокочастотный (или импульсный) диод. Чем больше его допустимый прямой ток (значения которого обычно лежат в пределах 30…100 мА), тем лучше. Выпрямительный диод в принципе работать будет, но очень плохо – он не рассчитан на работу с частотами выше 1 кГц.

Я изготовил плату этого усилителя промышленным способом: Усилитель наушников в классе А с однотактным выходом на промышленной плате. На этой же странице даны дополнительные советы по сборке, замене деталей и настройке, которые помогут и для сборки самодельной платы.

Блок питания

Для получения максимального качества звучания, усилитель должен иметь хороший источник питания, рис. 7. Несмотря на то, что все схемы проектируются так, чтобы питание на них влияло минимально (ну может кроме некоторых Hi — End изделий, которые как будто специально разрабатываются, чтобы плохо работать от «обычного» источника питания), тем не менее, питание должно быть хорошим. В усилителе используется стабилизированное питание. Сглаживающие конденсаторы С11, С12 (нумерация деталей блока питания продолжает нумерацию деталей усилителя, так уж вышло) имеют довольно большую емкость. Меньше 1000 мкФ использовать не желательно (но можно в крайнем случае), больше чем 3300 мкФ устанавливать нет смысла (но работать будет). Резисторы R11, R12 разряжают конденсаторы фильтра при выключении питания. Они не обязательны, но я привык их использовать – иначе лезешь в схему отверткой после того, как выключил из сети, а оттуда искры! Микросхемы стабилизатора заменять не следует: более дешевые 7812 и 7912 немного хуже стабилизируют напряжение, хуже работают с импульсными токами и «не любят» емкостную нагрузку. Конденсаторы С13, С14 улучшают сглаживание пульсаций. Диодный мост – любой на ток не менее 1 ампера. Микросхемы стабилизаторов очень желательно установить на небольшие радиаторы.

«Скользким» моментом в этой схеме является применение резисторов R8 и R9 в цепи первичной обмотки силового трансформатора. Их назначение – слегка обрезать верхушки синусоиды напряжения питания, а это в свою очередь снизит значение максимальной индукции в трансформаторе. В результате небольшое насыщение сердечника, которое всегда происходит при максимуме напряжения, будет предотвращено, и помехи, излучаемые трансформатором через его магнитное поле, снизятся. Это чисто партизанский метод – он ведет к некоторому снижению КПД блока питания, но он действует! Заодно эти резисторы работают чем-то вроде софтстарта. Снижение напряжения на верхушках синусоиды показано на рисунке 8. Мне было неудобно подключать осциллограф в сеть для иллюстрации результатов работы резисторов R8 и R9, поэтому на рис. 8 показан результат моделирования, но нечто очень похожее происходит и в реальности. И помехи, излучаемые трансформатором, которые могут воздействовать на схему, действительно снижаются. Заодно повышается эффективность конденсатора С10 по подавлению высокочастотных помех. На основную функцию блока питания резисторы R8 и R9 не влияют. С10 — специальный полипропиленовый конденсатор, поредназначенный для работы в качестве фильтра сетевых помех. Сейчас такие конденсаторы вполне доступны. Заменять его на «обычный», например К73-17 крайне не рекомендуется, но если все же используется К73-17, то на напряжение 630 вольт, на напряжение 400 вольт такой конденсатор использовать нельзя.

Резистор R10 соединяет землю схемы с корпусом усилителя. Наличие резистора создает защитную функцию: при случайном замыкании на корпус ток КЗ будет ограничен. А сам резистор при этом может сгореть, сыграв роль предохранителя. Его перегорание будет заметно, так что о возникшей проблеме сразу станет известно. Соединение с корпусом происходит автоматически через металлизированное монтажное отверстие блока питания и крепежный винт.

Важно! Корпус усилителя должен соединяться с землей схемы только в одной этой точке через резистор R10. Других соединений схемы с корпусом быть не должно.

Силовой трансформатор мощностью не менее 8 Вт (в общем-то допустима мощность от 6 Вт, но это сильно зависит от конкретного трансформатора – некоторые из них могут сильно греться). Он должен содержать две одинаковые вторичные обмотки (или одну обмотку со средней точкой) на напряжения 18…22 вольта каждая. Допустимый ток обмотки должен быть не менее 0,2 ампера. Например, подойдут ТПП-232, ТПП-234.

Все резисторы, кроме явно указанных на схеме, мощностью 0,125 Вт и точностью 5%.

После сборки блока питания высоковольтную часть платы блока питания (а лучше всю плату) со стороны монтажа следует покрыть цапон-лаком. Это предотвратит утечки по плате из сети в низковольтную часть.

Чертежи усилителя и печатной платы. Печатная плата слегка изменена относительно прототипа, показанного здесь на фотографиях.

Источник

Оцените статью