Ультразвуковой излучатель для увлажнителя воздуха своими руками

Увлажнитель воздуха своими руками

Необходимость поддержания оптимальной влажности

Влажность воздуха – важнейшая его характеристика для человека. Наши работоспособность, самочувствие и настроение зависят от влажности воздуха. Для детей влажность воздуха имеет большее значение, чем для взрослых. Для человека комфортным является значение 60% . При такой влажности наиболее эффективно усваивается кислород, содержащийся в воздухе. Если относительная влажность воздуха меньше 45%, человек чувствует усталость, сонливость. Сухой воздух вызывает пересыхание слизистых оболочек носа и глаз, вызывает раннее старение кожи, ее шелушение. Для уменьшения негативных воздействий влажность воздуха необходимо поддерживать на уровне 45-60%. Делается это увлажнителями или народными средствами.

Обзор типов увлажнителей

  • Традиционными (механическими)
  • Паровыми
  • Ультразвуковыми

Механические увлажнители при помощи вентилятора прогоняют воздух через воду. Недостатки: шум, ограничение уровня влажности (не более 60%).

Паровой увлажнитель работает по принципу чайника. Недостатки: горячий пар, большая потребляемая мощность.

Ультразвуковой увлажнитель при помощи ультразвука превращает воду в холодный пар. Недостаток один – для него нужна дистиллированная вода. Достоинств много: бесшумность работы, малое потребление электроэнергии, возможность повысить влажность более 60% (важно в сухом климате), высокая производительность. Создание увлажнителя такого типа будет рассмотрено в статье.

Цены на комнатные увлажнители наиболее популярных моделей известных фирм стартуют от 6-7 тысяч рублей. Самодельный увлажнитель обойдется всего около 1500-2000 руб. в зависимости от имеющихся у вас в наличии компонентов.

Технические характеристики разрабатываемого увлажнителя

  • Измерение влажности и при необходимости включение испарителя.
  • Задание порога включения от 0 до 99% влажности.
  • Расчётная производительность испарителя 500-800 грамм воды в час (реальная получилась около 650-700 грамм в час).
  • Измерение температуры воздуха.
  • Измерение атмосферного давления.
  • Индикация заданного порога и измеренных величин.
  • Защитное отключение при низком уровне воды.
Читайте также:  Самый красивый торт своими руками

Составные части увлажнителя

Увлажнитель выполнен в виде трех блоков:

  1. Блок испарителя состоит из резервуара с водой с погруженными в нее ультразвуковыми излучателями, вентилятора и выходного патрубка.
  2. Блок электроники. В составе: микроконтроллер ATmega328, датчики влажности, атмосферного давления, блок вывода параметров, транзисторный ключ включения излучателей.
  3. Блок питания 220В — 12В 3А. Обеспечивает питание увлажнителя.

Блочная конструкция была выбрана из соображений удобства использования. Блок испарителя стоит на полке. Блок электроники на столе в удобном месте. Блок питания располагается за креслом, возле розетки 220В.

Блок испарителя

Блок испарителя выполнен из пластикового контейнера на 7 литров с крышкой. Крышка в центральной части не плоская, что делает невозможным установку вентилятора и выходного патрубка. Поэтому в крышке удалена верхняя часть и из алюкобонда вырезана вставка с отверстиями для крепления вентилятора и выходного патрубка.

В самом контейнере размещен поплавок из пенопласта, на котором закреплены излучатели.

Сделано это для того, чтобы при падении уровня воды в процессе работы глубина погружения излучателей оставалась постоянной. Защита от критического уровня воды встроена в ультразвуковые излучатели. Они имеют электрод, выступающий над корпусом. При падении уровня воды ниже электрода происходит выключение излучателя.


Ультразвуковой генератор тумана (Поиск на AliExpress)

Поиск излучателей велся на всем известном китайском сайте по ключевым словам Mist Maker. Стоимость одного около 200-250 рублей.

Я проживаю в степной части Казахстана. Влажность здесь очень низкая и в летние месяцы колеблется от 10 до 40%. В связи с этим в блок испарителя были установлены два излучателя для увеличения производительности. Заявленная производительность – 400 грамм воды в час для одного излучателя; напряжение питания 24В; ток потребления 800мА (на самом деле такой ток потребляется во время включения, буквально на полсекунды, а при постоянной работе колеблется около 200-250мА).

Воздух через контейнер прогоняет 120 мм компьютерный вентилятор, установленный в крышке контейнера. После нескольких первых суток работы выяснилось, что несмотря на воздушный поток от вентилятора крупные капли от излучателей долетают до нижней части вентилятора. Замокает плата двигателя, окисляются контакты, и мотор выходит из строя. Во избежание этого под вентилятором был установлен кусочек пластиковой сетки вырезанной из оконной антимоскитной сетки и на всякий случай плата двигателя и детали на ней были залиты лаком. Теперь мелкие капли сдувает потоком воздуха, а крупные попадают на сетку и стекают обратно в контейнер.

Выходной патрубок сделан из куска пластиковой канализационной трубы диаметром 50мм. Он вращается в крышке вокруг своей оси, давая возможность направлять струю пара в нужном направлении. В длину поток пара достигает 1,4-1,7 метров.

Также на крышке установлен преобразователь напряжения из 12В в 24В. До преобразователя от 12В запитан вентилятор, после преобразователя от 24В запитаны излучатели. Это сделано потому, что у меня в наличии был блок питания на 12В. Если использовать блок питания на 24В, необходимость в преобразователе отпадает.

Блок электроники

Основой является микроконтроллер (МК) ATmega328P-PU. Он занимается опросом сенсоров, выводом измеренных параметров, сравнением показателей с установкой и включением излучателей. На плате распаян 6-пиновый разъем ISP, для прошивки МК. Программа написана в среде Arduino IDE и заливается через USBasp-программатор.

Принципиальная схема увлажнителя

К микроконтроллеру для индикации данных подключены: через драйвер MAX7219 трехсимвольный семисегментный индикатор для вывода измеренных величин и двухсимвольный семисегментный индикатор для вывода значения порога включения излучателей, три светодиода для обозначения отображаемых данных. Назначение светодиодов:

  • горит красный светодиод — на трехсегментном индикаторе отображается температура,
  • горит желтый — отображается атмосферное давление,
  • горит зеленый – отображается относительная влажность воздуха.

Данные сменяются по кругу каждые 5 секунд.

Микросхема MAX7219 позволяет управлять светодиодными матрицами, линейками, отдельными светодиодами. Максимум можно подключить 64 светодиода или восемь семисегментных индикаторов. В микросхему отправляются данные в виде 16-ти битных пакетов. После отправки данные выводятся на индикаторы по принципу динамического управления. При управлении восемью семисегментными индикаторами частота обновления 800Гц. Микросхема управляется по интерфейсу SPI.


Проверка работы индикации после распайки MAX7219

Применение микросхемы MAX7219 и семисегментных индикаторов в моем случае обосновано в первую очередь их наличием и во вторую размером индикаторов. Отображаемые данные видно с 2-3 метров. При желании можно применить экраны от Nokia5110, OLED экран, TFT экран. Кому как удобнее.

Для измерения влажности применен датчик DHT-22 он же АМ2302. Этот датчик позволяет измерять влажность в пределах 0..99,9% с погрешностью 2% и температуру -40..+80 с погрешностью 0,5 градуса. Считывать значения можно не чаще, чем раз в 2 секунды. Диапазон питания 3,3-5,5В.

Для измерения атмосферного давления применен датчик BMP180. Диапазон измерения давления 300-1100hPa. Диапазон измерения температуры -40..+85 градусов. Напряжение питания 3,3-5В. Подключение по протоколу I2C.


Проверка работы полностью законченной платы

Порог включения ультразвуковых излучателей задается переменным резистором, подключенным к аналоговому входу МК. Диапазон задания порога 0-99%.

Управление излучателями производится транзисторным ключом на MOSFET транзисторе 5N65. Можно использовать другой с напряжением более 30В и током более 2А.

В качестве корпуса для блока электроники использована емкость от дезодоранта. Нижняя часть прозрачной емкости отпилена и закрыта стандартным колпачком от такого же дезодоранта.


Внешний вид блока электроники

Схема довольно простая, поэтому была спаяна на макетной плате.

Блок питания

Для питания устройства используется блок питания с выходным напряжением 12В и максимальным током 3А.

Внутрь него установлен стабилизатор L7805 и сделан дополнительный выход 5В для питания блока электроники. Изначально этот стабилизатор был установлен в самом блоке электроники, но при работе он грелся, нагревал блок и датчики, чем сильно искажал показания температуры и влажности. После этого он был вынесен из блока электроники в блок питания.

Заключение

После нескольких недель эксплуатации выявлен только один недостаток, о котором было известно заранее. При использовании фильтрованной затем кипяченной и еще раз отфильтрованный воды на поверхностях в квартире остается белый налет примесей из воды. При использовании дистиллированной воды данный недостаток не наблюдается. Увлажнителем вся семья довольна.


Увлажнитель в работе

Источник

Как сделать ультразвуковой увлажнитель воздуха своими руками

Сухой воздух в жилых помещениях — абсолют дискомфорта и одна из первопричин плохого самочувствия. Но не следует торопиться с покупкой дорогостоящей техники, если есть время и ресурсы, чтобы самому изготовить простейший увлажнитель, притом как высокоэффективный компактный прибор.

Отличие от парогенератора

Бытовые увлажнители воздуха бывают двух типов. Одни работают за счёт увеличения площади испарения, другие — путём нагрева жидкости до образования пара. В обоих случаях испарение воды происходит естественным образом, о парогенераторах сегодня речь не пойдёт.

Большинство современных бытовых приборов используют пьезоизлучатель — пластинку, вибрирующую на ультразвуковой частоте. Принцип испарения здесь такой: вода разбивается на очень мелкие частички, мелкодисперсную взвесь, которые не могут «склеиться» обратно и продолжают существовать в виде водяного пара. Преимущество дисперсных увлажнителей в малом энергопотреблении и практически полном отсутствии накипи в самом устройстве, что сказывается на его долговечности.

Бытовой ультразвуковой увлажнитель воздуха

Детали корпуса

В качестве корпуса для увлажнителя мы рекомендуем взять герметичный контейнер для пищевых продуктов. Его высота должна быть не менее 150 мм, а ширина — о коло 300 мм.

Ёмкость для воды — обычная трехлитровая банка. Испаряться полностью она будет за 6–8 ч, если нужно больше, используйте пятилитровые бутыли или баллоны для питьевой воды.

Возможно два типа соединения ёмкости с корпусом. В нашем случае мы будем устанавливать банку вверх ногами на круглую шайбу из дерева. Конечно, срок службы такой детали не слишком большой, но ничто не мешает изготовить новую. К тому же за основу можно взять «влагостойкое» дерево, например, лиственницу или липу. Сперва высверливаем 100 мм коронкой по дереву шайбу из доски толщиной 50 мм. Затем по имеющемуся отверстию в центре коронкой на 75 или 80 мм изготавливаем кольцевую канавку глубиной около 15 мм, а потом выбираем центральную часть коронкой на 60 или 50 мм.

Перочинным ножом расширяем выборку от коронки до 9–10 мм, затем проходим внутри тонкой стамеской, придавая правильный профиль. В итоге шайба должна достаточно плотно надеваться на банку, как крышка. По верхней грани шайбы делаем ножовкой пропил крест-накрест на глубину около 15 мм, чтобы получились небольшие отверстия для подсоса воздуха и оттока воды. В итоге конструкция должна работать как поилка для молодняка птицы.

В качестве второго варианта можно использовать и внешнюю ёмкость: небольшой бачок или канистру, соединённую с испарителем двумя тонкими силиконовыми трубками. Важно, однако, чтобы трубка подачи выходила в самом низу ёмкости. Уровень врезки второго шланга в точности определяет высоту слоя воды.

Ультразвуковой испаритель

Это, по сути, единственная дорогостоящая деталь из тех, что придётся покупать. Но не стоит спешить приобретать комплектующие для существующих моделей увлажнителей воздуха, они как минимум вдвое дороже.

От 300 до 500 рублей стоит обычный пьезоэлемент. Купить такой можно на интернет-аукционах, либо напрямую из Китая. Не ошибитесь в выборе: «голый» пьезоэлемент не подойдёт, необходимо устройство во влагозащищённом корпусе с парой выходящих проводов и штекером на конце. Отличие в том, что такой увлажнитель имеет всю необходимую обвязку для генерации нужной частоты и может быть размещён буквально в любой ёмкости с водой без дополнительной гидроизоляции.

Испаритель нужно закрепить на дне контейнера в произвольном месте, но не вплотную к стенкам, оставляя свободное место для установки ёмкости с водой. Если корпус испарителя не водоупорный, либо при установке пластина не погружается достаточно глубоко, устройство можно закрепить на дне контейнера с наружной стороны. Необходимо проделать аккуратное отверстие под бортик пластины и уплотнить примыкание санитарным силиконом. Для устойчивости контейнер потребуется снабдить ножками или подставкой.

Защита от сухого хода

Излучатель должен всегда находиться в погруженном состоянии, это критически важно. Без воды он резонирует, разогревается и выходит из строя за считанные секунды.

Защиту от сухого хода можно выполнить простейшим датчиком уровня жидкости омывателя для отечественных автомобилей. Желательно приобретать короткие поплавковые датчики с герконом в небольшой трубке, иначе велик риск, что выключаться увлажнитель будет раньше, чем закончится вода в банке.

Установите датчик на дно контейнера, чтобы после установки банки он оказался внутри. Если ёмкость стоит отдельно, датчик устанавливается в ней. Обычный режим работы датчика — открытый контакт, однако схем включения может быть несколько. Чтобы инвертировать сигнал, используйте промежуточное реле или полупроводниковый ключ. Если же контактный датчик имеет стандартную схему работы, то его можно подключать прямо в разрыв цепи питания маломощного излучателя.

Питание и автоматика

Большинство пьезоизлучателей рассчитано на питание низким напряжением в 12 или 24 В постоянного тока. Есть масса вариантов, чем запитать самодельный увлажнитель. Мы рекомендуем исключительно в целях безопасности размещать блок питания и автоматики в отдельном корпусе.

Простейший и универсальный вариант — блок питания ПК. У них единая система обозначения:

  • жёлтые провода +12 В;
  • чёрный провод — общий минус;
  • тёмно-синий провод — 12 В в обратной полярности (до 0,5А).

Таким образом, подключение на 12 В выполняется чёрным и жёлтым проводом, а на 24 В — жёлтым и синим.

Поскольку для питания излучателя не требуется идеально стабилизированное напряжение, можно использовать небольшие трансформаторы из старых радиоприёмников и прочей бытовой техники с диодным мостом и без генератора частоты. Можно и самому намотать трансформатор на небольшом (до 30 мм) ферритовом сердечнике, благо мощность у пьезоизлучателя минимальная.

Чтобы автоматизировать работу испарителя на отключение при достижении определённого уровня влажности, потребуется навесным монтажом собрать небольшую схему. Первая его часть — сенсор DHT11 с цифровым сигналом на выходе. Второй элемент — Arduino mini в качестве цифрового контроллера. Исполнительным устройством схемы выступает тиристорный ключ или микрореле с током потребления до 0,3 А, а в качестве регулятора — переменный резистор на 10–15 кОм.

1. Разъемы питания. 2. Ключевые транзисторы. 3. Плата контроллера Arduino. 4. Датчик влажности

Скетч (алгоритм, микропрограмма) для такой сборки очень простой. Объявляем две глобальные переменные int и записываем в них значения на Pin’ах сенсора и потенциометра. Для сравнения значений используется всего одна конструкция if-else в бесконечном цикле, вторичным условием которой выступает исключение, отключающее реле пьезоизлучателя, если значение переменной влажности превысило значение установки. Чтобы откалибровать значения, используйте монитор порта подключенной платы.

Окончательная сборка устройства

Наконец, соберём устройство. Шайбу под банку притягиваем ко дну контейнера саморезами, предварительно подмазав герметиком. Ставим пустую банку на место, замеряем отступы от бортов и переносим размеры на крышку контейнера. Вырезаем по разметке отверстие и надеваем на край тонкую силиконовую трубку, разрезанную вдоль.

С отступом в 20–30 мм от выреза проделываем второе отверстие диаметром 50 мм и устанавливаем на четырёх винтах 60 мм компьютерный куллер, который будет направлять поток воздуха вверх, удаляя пар из контейнера и облегчая его генерацию небольшим разрежением. Для соединения с блоком питания используется ПВС 3х0,75 мм.

Теперь остаётся наполнить банку водой до краёв, надеть сверху собранный увлажнитель, перевернуть конструкцию и подать питание.

Источник

Оцените статью