2 Схемы
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
Цифровой кнопочный потенциометр — регулятор громкости
Схема кнопочного потенциометра (сдвоенного) с цифровым управлением построена на основе специализированной микросхемы DS1267 от компании Dallas. В этом проекте используется версия 100к. Для управления ей служит микроконтроллер ATTiny13, выбранный из-за небольших размеров. Потенциометр позволяет регулировать максимум 256 шагов, однако можно применить ограниченное значение до 128 шагов. Этот показатель свободно устанавливается изменяя исходный код программы. На плате предусмотрен также вывод поляризации системы DS1267, так называемые «VBias», который можно поляризировать отрицательным напряжением, когда требуется перемещение бОльших чем 0,5 В амплитуд сигнала.
Устройство с успехом может заменить классический потенциометр (регулятор громкости), что и было проверено на этом самодельном усилителе.
В схеме регулятора применены в основном SMD элементы, чтобы максимально уменьшить его размеры. Плата с успехом может быть встроенная в любую часть усилителя звука, так как ее высота всего 1 см. Регулировка громкости осуществляется с помощью двух миниатюрных кнопок (микриков), припаянных непосредственно на плату. Светодиод сигнализирует своим миганием о процессе нажатия и регулировании.
Схема электрическая кнопочного регулятора
Основой схемы является микроконтроллер U1 (ATTiny13), работающий на внутреннем источнике синхронизации (внутреннем генераторе). По трех-проводной шине он управляет состоянием U2 (DS1267). Выходами потенциометров будут разъемы P1 и P2. Диод D1 вместе с резистором, ограничивающим его ток, выполняет функцию индикатора работы шины. Короткой вспышкой сообщает о факте отправки данных в м/с U2. Конденсатор C1 (100nF) представляет собой фильтр питания.
Изготовление конструкции
Схема паяется на печатной плате из фольгированного стеклотекстолита. Плата не содержит перемычек, а два кажущихся разрыва в цепи массы будут местами пайки корпуса кнопок. Монтаж следует начать с припаивания интегральных микросхем, потому что это делается гораздо удобнее, когда нет выступающих элементов от другой стороны. Порядок пайки остальных элементов произвольный. Схему необходимо питать напряжением 5 В, желательно стабилизированным.
Определенным неудобством является программирование микроконтроллера, так как здесь не предусмотрено разъема программирования. Чтобы запрограммировать МК U1 — подпаяйте аккуратно к его выводам тонкие провода, которые затем будут подключены к программатору. Вывод VB (VBias) соединен с массой схемы, однако, если необходимо подключение этого входа к другой полярности, просто вырежьте фрагмент дорожки между выводами на плате. Когда потенциометр работает для регулировки громкости предусилителя и амплитуда сигнала, что на него подается не превышает 0,5 вольта, то выход VB следует поляризировать относительно отрицательного напряжения -5 В относительно массы. Это обеспечит правильную передачу аналогового сигнала.
кнопочный регулятор — потенциометр
Следует иметь в виду, что потенциометр имеет максимально допустимое напряжение, которое может присутствовать на любом из контактов (относительно GND) от -0.1 до +7 В для Vb = 0 и от -5 до +7 В для Vb = -5 В. При эксплуатации регулятора следует позаботиться о том, чтобы не превышать указанные допустимые границы напряжений. Когда вы питаете схему от отдельного БП, необходимо убедиться, что масса потенциометра (GND) и масса схемы назначения связаны между собой.
Фьюзы биты
На рисунке показаны настройки фузов для микроконтроллера ATTiny13
Управление регулятором
Работа со схемой проста. Изменение громкости осуществляется нажатием кнопок S1 и S2. Удержание нажатой кнопки вызывает плавное перемещение воображаемого ползунка потенциометра в нужном направлении. Светодиод D1 сигнализирует своим миганием факт изменения положения ползунка. Когда он достигнет одной из крайних позиций — индикатор перестанет мигать, хотя вы и продолжите держать нажатой кнопку.
Подключение регулятора
Прошивка и плата
Все необходимые для самостоятельной сборки файлы вы можете скачать по ссылке.
Источник
Цифровой регулятор громкости
При построении Hi-End УМЗЧ встает проблема выбора ИМС регуляторов громкости. Такие известные ИМС, как TDA 1524/1526, ТСА740/730, КР 174ХА53/54, ТЕА6300/6310/6330, LM1036 имеют сравнительно большой для Hi-End УМЗЧ коэффициент шума (от -57 до -90 дБ).
Характеристики электронного регулятор громкости:
Коэффициент шума: 70 дБ
Коэффициент нелинейных искажений: 0,001%
Неравномерность АХЧ: около нуля
Диапазон рабочих частот: 0 — 100000 Гц
Входное напряжение: 0,5 В
Выходное напряжение: 0 — 0,5 В
Входное сопротивление: 10 кОм
Напряжение питания: 7 — 20 В
Такие параметры, как коэфициент интермодуляционных искажений (КИИ) и коэффициент шума определяются в основном качеством монтажа схемы. Этому параметру особое внимние. При плохом монтаже появляется емкосная и индуктивная связи, что приводит к повышению КИИ, неравномерности АХЧ и «подвозбудам». Структурная схема устройства показана на рис.1. Оно состоит из цифровой схемы управления (1), идентичных блоков делителей напряжения для левого и правого каналов (2) и (3). Делитель напряжения построен на резисторах (рис.2).
На микросхемах DD1, DD2 выполнены интегральные двунаправленные ключи, которые коммутируют нужный коэффициент деления входного напряжения. Устройство имеет семь коэффициентов деления. Номиналы резисторов не указаны. Пользователь сам выбирает нужный коэффициент деления подбором резисторов. Полное сопротивление цепочки резисторов должно быть 9-15 кОм. Некоторые рекомендации по выбору номиналов резисторов: R1 — должен иметь такое сопротивление, при котором уровень громкости очень малый (при котором хорошо засыпать), его номинал около 100 Ом при полном сопротивлении цепочки 10 кОм. Сопротивление резисторов (кОм) можно определить по формулам.
R3 = RU1/U — R1 — R2
R4 = RU1/U — R1 — R2 — R3
R5 = RU1 — R1 — R2 — R3 — R4
R6 = RU1/U — R1 — R2 — R3 — R4 — R5
R7 = RU1/U — R1 — R2 — R3 — R4 — R5 — R6
R8 = RU1 — R1 — R2 — R3 — R4 — R5 — R6 — R7
R9 = RU1/U — R1 — R2 — R3 — R4 — R5 — R6 — R7 — R8,
где: R — полное сопротивление делителя (кОм); U — входное напряжение (мВ), U1 — напряжение, которое нужно получить на выходе (мВ).
Резисторы рассчитывают в последовательности от R1 до R9. Коэффициент деления определяют по формуле: К = U/ U1 = R/Rц, где U, U1 — входное и выходное напряжения (мВ), R, Rц — сопротивление полное и цепочки (считая от R1 к нужному резистору). Принципиальная схема цифрового блока управления показана на рисунке 3. В него входят узел управления на микросхеме DD1, реверсивный счетчик импульсов DD2, определяющий нужный уровень громкости дешифратор DD3, стабилизатор напряжения питания DA1. Выбор фиксированного уровня громкости производится кнопками SB1 и SB2. Дребезг их контактов устраняется элементами DD1.1 и DD1.2. При нажатии на кнопку SB1 («+») на выходе элемента DD1.1 устанавливается низкий логический уровень. Этот уровень поступает на вход элемента DD1.3, на выходе которого появляется высокий логический уровень, переключающий счетчик на микросхеме DD2. Поскольку на входе управления направлением счета (вывод 10 МС DD2) высокий логический уровень с выхода элемента DD1.2, показания счетчика увеличиваются на единицу. Когда на кнопку SB1 нажимают восьмой раз, счетчик досчитывает до восьми, и на выводе 9 DD3 появляется лог. «1». Начинает заряжаться конденсатор С5 через резистор R5, формируя импульс высокого уровня — счетчик сбрасывается, и процесс повторяется. Когда нажимают на SB2 («-«), на входе элемента DD1.2 появляется низкий логический уровень, сигнал которого переводит реверсивный счетчик DD2 в режим вычитания. Поскольку на вход 15 счетчика DD2 с выхода элемента DD1.3 поступает сигнал высокого уровня, счетчик срабатывается, и его показания уменьшаются на единицу. Конденсатор С2 обеспечивает задержку поступления счетного импульса на выход 15 микросхемы DD2 при переходе счетчика из режима суммирования в режим вычитания и наоборот. Условный номер уровня громкости (от 0 до 9) в виде четырехразрядного двоичного кода поступает со счетчика DD2 на дешифратор DD3. Дешифратор DD3 преобразует четырехразрядный двоичный код в позиционный, при этом на одном из его выходов появляется сигнал высокого напряжения, а на остальных — низкого. Сигналы по шине DL поступают на делители напряжения левого и правого каналов. Активным уровнем является лог. «1». При подключении напряжения питания ток заряда конденсатора С4, протекающий через резистор R5, создает на нем импульс высокого уровня. В результате микросхема устанавливается в исходное (нулевое) состояние, при котором на выходе дешифратора (DD3) лог. «1», которая по шине DL поступает на блок делителей напряжения на вход управления двунаправленного интегрального ключа DD2.4 (рис.2), который подключает точку соединения резисторов R1 и R2 к выходу устройства. Таким образом организовано управление.
В устройстве можно применить следующие электронные компоненты: резисторы МЛТ-0,125; конденсаторы С1 — С8, С10, С11 (рис.3), С1, С2 (рис.2) — керамические К10-17 или аналогичные; электролитический конденсатор С9 — фирмы SAMSUNG. Микросхемы можно заменить на аналогичные серий К176, К564, КР1561 или импортные. Интегральный стабилизатор (DA1) — любой с напряжением стабилизации 5 В. Устройство смонтировано на двусторонней фольгированной плате из стеклотестолита. Фольга со стороны деталей используется в качестве экрана. Выводы элементов должны быть по возможности короче. Сигнальные провода, идущие к устройству, экранированные. Блокировочные конденсаторы распределяются следующим образом: С6 к DD1, С7 к DD2; C8 к DD3,C9,C10,C11 к DA1 (рис.3); С1 к DD1, C2 к DD2 (рис 2) и припаиваются прямо к ножкам питания данных микросхем. Кнопки SB1 и SB2 выведены на лицевую панель УМЗЧ. Питается устройство от блока питания УМЗЧ. Над блоками 2 и 3 (рис.1) обязательно должен быть экран из тонкой фольги. Монтаж должен быть хорошо продуман, иначе регулятор будет работать НЕУСТОЙЧИВО. Устройство не требует регулировок, за исключением делителей напряжения (при необходимости). Если оно смонтировано без ошибок, то начинает работать сразу после подачи напряжения питания. Контроль работы цифровой части заключается в проверке счета формирования импульсов, поступающих с SB1 и SB2 в режиме суммирования и вычитания. Затем устройство подключают к УМЗЧ и проверяют возможность регулировки громкости.
Источник
Электронный регулятор громкости звука с дистанционным управлением
В этой статье мы рассмотрим схему электронного регулятора громкости звука с возможностью дистанционного управления и цифровой индикацией уровня.
Рис.1. Передняя сторона устройства
Рис.2. Задняя сторона устройства
Увеличение громкости осуществляется кнопкой или дистанционно с пульта ДУ (инфракрасное управление). Подходит практически любой домашний пульт управления.
Схема устройства представлена на рисунке 3.
Рис.3. Схема электрическая принципиальная
Переключения уровней звука основаны на десятичном счетчике CD4017 (DD1). Данная микросхема имеет 10 выходов Q0-Q9. После подачи питания на схему, на выходе Q0 сразу присутствует логическая единица, светодиод HL1 светится, указывая на нулевой уровень звука. К остальным выходам Q1-Q9 подключены резисторы R4-R12, которые имеют разное сопротивление.
Напомню, что микросхема в один и тот же момент времени выдает сигнал высокого уровня только на одном из своих выходов, а последовательное переключение между ними происходит при подаче короткого импульса на вход (вывод 14).
Исходя из этого, сопротивления в группе резисторов R4-R12 подобраны в порядке убывания (сверху-вниз по схеме), чтобы при каждом переключении микросхемы на базу транзистора VT2 поступало все больше и больше тока, постепенно открывая транзистор.
На коллектор этого транзистора подается сигнал от внешнего УНЧ или источника звука.
Итак, переключая микросхему счетчик, мы, по сути, изменяем сопротивление коллектор-эмиттер и тем самым изменяем громкость звука поступающего на динамик.
Сопротивления резисторов зависят от коэффициента усиления транзистора (h21э). Например, при использовании 2N3904 сопротивление резистора R4 может быть около 3 кОм, чтобы чуть чуть «приоткрыть» транзистор, звук при этом будет на самом тихом уровне. А сопротивление R12 должно быть наименьшим из всей группы (около 50 Ом), чтобы обеспечить режим насыщения и максимальную пропускную способность коллектор-эмиттер, соответственно максимальную громкость данного регулятора.
Мне трудно указать конкретные номиналы R4-R12, так как это еще очень сильно зависит от мощности звукового сигнала, поданного на транзистор, а также от питания. Лучше всего использовать многооборотные подстроечные резисторы и настроить ступени «на слух».
В нижней части схемы представлен узел индикации, основанный на дешифраторе К176ИД2 (DD2). Он предназначен для управления семисегментным индикатором.
На входы дешифратора подается двоичный код, поэтому на диодах VD1-VD15 построен шифратор, который преобразует десятичный сигнал от CD4017 в двоичный код, понятный для К176ИД2. Такая схема на диодах может показаться странной и архаичной, но вполне работоспособна. Диоды следует выбирать с малым падением напряжения, например диоды Шоттки. Но в моем случае использованы обычные кремниевые 1N4001, их видно на рисунке 2.
Итак, сигнал с выхода счетчика поступает не только на базу транзистора, но и на диодный преобразователь, превращаясь в двоичный код. Далее DD2 примет двоичный код и на семисегментном индикаторе отобразится нужная цифра, показывающая уровень звука.
Микросхема К176ИД2 удобна тем, что позволяет использовать индикаторы и с общим катодом, и с общим анодом. В схеме использован второй тип. Резистор R17 ограничивает ток сегментов.
Резисторы R13-R16 стягивают входы дешифратора на минус для стабильной работы.
Теперь рассмотрим верхнюю левую часть схемы. Двухпозиционным переключателем SA1 устанавливается режим управления громкостью. В верхнем (по схеме) положении ключа SA1 громкость изменяется вручную, путем нажатия на тактовую кнопку SB1. Конденсатор C3 устраняет дребезг контактов. Резистор R2 стягивает вход CLK на минус, предотвращая ложные срабатывания.
После подачи питания светится светодиод HL1, а индикатор показывает ноль — это режим без звука (Рисунок 4, сверху).
Рис.4. Отображение уровней на индикаторе
Нажимая на тактовую кнопку, маленькими скачками происходит увеличение громкости динамика от 1-го до 9-го уровня, следующее нажатие снова активирует беззвучный режим.
Если установить переключатель в нижнее (по схеме) положение, то вход DD1 подключается к схеме инфракрасного дистанционного управления, основанной на TSOP приемнике. При поступлении внешнего ИК сигнала на TSOP приемник, на его выходе появляется отрицательное напряжение, отпирающее транзистор VT1. Данный транзистор — любой маломощный, структуры PNP, например КТ361 или 2N3906.
ИК приемник (IF1) рекомендую выбрать с рабочей частотой 36 кГц, так как именно на этой частоте работает большинство пультов (от телевизора, DVD и т.д.). При нажатии на любую кнопку пульта, будет происходить управление громкостью.
В схеме присутствует кнопка с фиксацией SB2. Пока она нажата, вывод сброса RST подключен к минусу питания и счетчик будет переключаться. С помощью этой кнопки можно осуществить сброс счетчика и уровня громкости до нуля, а если оставить ее в отключенном положении, вывод сброса окажется не стянутым на минус и счетчик не будет принимать сигналы с пульта ДУ, и не будет реагировать на нажатия кнопки SB1.
Рис.5. Переключатели, тактовая кнопка и TSOP приемник с обвязкой выведены на отдельную плату
Аудиосигнал на транзистор регулятора я подаю с усилителя на микросхеме PAM8403. Коллектор VT2 подключен к положительному выходу одного из каналов усилителя (R), а его эмиттер к положительному контакту колонки (красный провод на фото). Отрицательный контакт колонки (черно-красный) подключен к минусу используемого канала. Источник звука в моем случае мини mp3 плеер.
Рис.6. Подключение устройства
Почему использованы подстроечные резисторы?
Хочу обратить ваше внимание на фото задней стороны устройства (рис.2). Там видно, что присутствуют три подстроечных резистора R4, R5, R6 на 100 кОм. Я реализовал только лишь три уровня громкости, потому что остальные резисторы (R7-R12) не поместились на плате. Подстроечные резисторы позволяют настроить уровни громкости для разных источников звука, т.к. они отличаются по мощности аудиосигнала.
Недостатки устройства.
1) Регулирование громкости происходит только вверх по уровню, т.е. только громче. Убавлять сразу не получится, придется дойти до 9-го уровня и затем снова вернуться к начальному уровню.
2) Немного ухудшается качество звука. Наибольшие искажения присутствуют на тихих уровнях.
3) Не осуществляет управление стерео сигналом. Введение второго транзистора для еще одного канала не решают проблему, т.к. эмиттеры обоих транзисторов объединяются на минус питания, что приводит к «моно» звуку.
Усовершенствование схемы.
Можно использовать вместо транзистора резисторную оптопару. Фрагмент схемы представлен на рисунке 7.
Рис.7. Фрагмент этой же схемы с оптопарой
Резисторная оптопара состоит из излучателя и приёмника света, соединенных оптической связью. Они имеют гальваническую развязку, а значит управляющая схема не должна вносить помехи в звуковой сигнал, проходящий по фоторезистору. Фоторезистор под действием света излучателя (светодиода или т.п.) будет изменять свое сопротивление и громкость будет изменяться. Элементы оптопары гальванически изолированы, а значит можно управлять двумя или более каналами аудиосигнала (рис.8).
Рис.8. Управление двумя каналами с помощью резисторных оптопар
Резисторы R4-R12 подбираются индивидуально.
Питание устройства можно осуществлять от USB 5 Вольт. При повышении напряжения следует увеличить сопротивление токоограничивающего резистора R17, чтобы не вышел из строя семисегментный индикатор HG1, а также следует увеличить сопротивление R1, чтобы защитить TSOP приемник. Но не рекомендую превышать питающее напряжение выше 7 Вольт.
К данной статье имеется видео, в котором изложен принцип работы, показана собранная на плате конструкция и проведен тест данного устройства.
Источник