Цифровая паяльная станция своими рука

Маленькая паяльная станция своими руками v2

Некоторое время назад я собрал маленькую паяльную станцию, о которой хотел рассказать. Это дополнительная упрощенная паяльная станция к основной, и конечно не может ее полноценно заменить.

1. Паяльник. В коде заданы несколько температурных режимов (100, 250 и 350 градусов), между которыми осуществляется переключение кнопкой Solder. Плавная регулировка мне тут не нужна, паяю я в основном на 250 градусах. Мне лично это очень удобно. Для точного поддержания температуры используется PID регулятор.

Заданные режимы, пины, параметры PID можно поменять в файле 3_Solder:

2. Фен. Также заданы несколько температурных режимов (переключение кнопкой Heat), PID регулятор, выключение вентилятора только после остывания фена до заданной температуры 70 градусов.

Заданные режимы, пины, параметры PID можно поменять в файле 2_Air:

  1. Паяльник применил от своей старой станции Lukey 936A, но с замененным нагревательным элементом на китайскую копию Hakko A1321.
  2. Кнопка отключения отключает сразу все что было включено.
  3. Можно одновременно включать и паяльник и фен.
  4. На разъеме фена присутствует напряжение 220В, будьте осторожны.
  5. Нельзя отключать паяльную станцию от сети 220В пока не остынет фен.
  6. При отключенном кабеле паяльника или фена, на дисплее будут максимальные значения напряжения с ОУ, пересчитанные в градусы (не ноль). Поясню: если например просто подключить кабель холодного паяльника должен показывать комнатную температуру, при отключении покажет например 426. Какой в этом плюс: если случайно оборвется провод термопары или терморезистора, на выходе ОУ будет максимальное значение и контроллер просто перестанет подавать напряжение на нагреватель, так как будет думать что наш паяльник раскален и его нужно охладить.
  7. Защиты от КЗ нет, поэтому рекомендую установить предохранители.
  8. Стабилизатор на 5В для питания Arduino используйте любой доступный с учетом напряжения питания вашего БП и нагрева в случае линейного стабилизатор. Так как у меня напряжение 20В установил 7805.
  9. Паяльник прекрасно работает и при 30В питания, как в моей основной паяльной станции. Но при использовании повышенного напряжения учитывайте все элементы: стабилизатор 5В и то что напряжение вентилятора 24В.
Читайте также:  Ремонт зонтиков своими руками полуавтомат

Основные узлы и состав:

1. Основная плата:

— Arduino Pro mini,
— сенсорные кнопки,
— дисплей от телефона Nokia 1202.

2. Плата усилителей:

— усилитель терморезистора паяльника,
— полевой транзистор нагрева паяльника,
— усилитель термопары фена,
— полевой транзистор включения вентилятора фена.

3. Плата симисторного модуля

— оптосимистор MOC3063,
— симистор со снабберной цепочкой.

— блок питания от ноутбука 19В 3.5А,
— выключатель,
— стабилизатор для питания Arduino.

А теперь подробнее по узлам.

1. Основная плата


Обратите внимание наименование сенсорных площадок отличается от фото. Дело в том, что в связи с отказом от регулировки оборотов вентилятора, в коде я переназначил кнопку включения фена. В самом начале регулировка оборотов была реализована, но так как напряжение моего БП 20В (увеличил на 1В добавлением переменного резистора), а вентилятор на 24В, решил отказаться. Сигнал с сенсорных кнопок TTP223 (включены в режиме переключателя Switch, на пин TOG подан 3.3В) считывается Arduino. Дисплей подключен через ограничительные резисторы для согласования 5В и 3.3В логики. Такое решение не совсем правильное, но уже работает несколько лет в разных устройствах.

Основная плата двухстороннего печатного монтажа. Металлизацию оставлял по максимуму, чтобы уменьшить влияние помех, а также для упрощения схемы сенсорных кнопок (для TTP223 требуется конденсатор по входу на землю для уменьшения чувствительности. Без него кнопка будет срабатывать просто при приближении пальца. Но так как у меня сделана сплошная металлизация этот конденсатор не требуется). Сделан вырез под дисплей.

На верхней стороне находятся площадки сенсорных кнопок, наклеена лицевая панель, припаивается дисплей. Площадки сенсорных кнопок и дисплей подключены к нижней стороне через перемычки тонким проводом. Типоразмер резисторов и конденсатора 0603.

Лицевую панель, по размерам из 3Д модели, я сначала нарисовал в программе FrontDesigner-3.0_rus, в файлах проекта лежит исходник.

Распечатал, вырезал по контуру, а также окно для дисплея.

Далее заламинировал самоклеящейся пленкой для ламинирования и приклеил к плате. Дисплей за также приклеен к этой пленке. За счет выреза в плате дисплей получился вровень с основной платой.

На нижней стороне находится Arduino Pro mini и микросхемы сенсорных кнопок TTP223.

2. Плата усилителей

Схема паяльника состоит из дифференциального усилителя с резистивным мостом и полевого транзистора с обвязкой.

  1. Для увеличения «полезного» диапазона выходного сигнала при низкоомном терморезисторе (в моем случае в китайской копии Hakko A1321 56 Ом при 25 градусах, для сравнения в 3д принтерах обычно стоит терморезистор сопротивлением 100 кОм при 25 градусах) применен резистивный мост и дифференциальный усилитель. Для уменьшения наводок параллельно терморезистору и в цепи обратной связи стоят конденсаторы. Данная схема нужна только для терморезистора, если в вашем паяльнике стоит термопара, то нужна схема усилителя аналогичной в схеме фена. Настройка не требуется. Только измерить сопротивление вашего терморезистора при 25 градусах и поменять при необходимости резистор 56Ом на измеренный.
  2. Полевой транзистор был выпаян из материнской платы. Резистор 100 кОм нужен чтобы паяльник сам не включился от наводок если ардуина например отключится, заземляет затвор полевого транзистора. Резисторы по 220 Ом для ограничения тока заряда затвора.

Схема фена состоит из неинвертирующего усилителя и полевого транзистора.

  1. Усилитель: типовая схема. Для уменьшения наводок параллельно термопаре и в цепи обратной связи стоят конденсаторы.
  2. Обвязки у полевого транзистора ME9926 нет, это не случайно. Включение ничем не грозит, просто будет крутится вентилятор. Ограничения тока заряда затвора тоже нет, так как емкость затвора небольшая.

Типоразмер резисторов и конденсаторов 0603, за исключением резистора 56 Ом — 1206.
Настройка не требуется.

Нюансы: применение операционного усилителя LM321 (одноканальный аналог LM358) для дифферециального усилителя не является оптимальным, так как это не Rail-to-Rail операционный усилитель, и максимальная амплитуда на выходе будет ограничена 3.5-4 В при 5В питания и максимальная температура (при указанных на схеме номиналах) будет ограничена в районе 426 градусов. Рекомендую использовать например MCP6001. Но нужно обратить внимание что в зависимости от букв в конце отличается распиновка:

3. Плата симисторного модуля

Схема стандартная с оптосимистором MOC3063. Так как MOC3063 сама определяет переход через ноль напряжения сети 220В, а нагрузка — нагреватель инерционный элемент, использовать фазовое управление нет смысла, как и дополнительных цепей контроля ноля.

Нюансы: можно немного упростить схему если применить симистор не требующий снабберной цепочки, у них так и указано snubberless.

4. Блок питания

Выбор был сделан по габаритным размерам и выходной мощности в первую очередь. Также я немного увеличил выходное напряжение до 20В. Можно было и 22В сделать, но при включении паяльника срабатывала защита БП.

5. Корпус

Корпус проектировался под мой БП, с учетом размеров плат и последующей печати на 3Д принтере. Металлический даже не планировался, приличный алюминиевый анодированный корпус дороговато и царапается, и куча других нюансов. А гнуть самому красиво не получится.

Источник

Самодельная цифровая паяльная станция DSS.

Привет ВСЕМ! Пополняем свою лабораторию самодельным инструментом – на этот раз это будет самодельная цифровая паяльная станция DSS. До этого у меня ничего подобного не было, поэтому и не понимал, в чем ее плюсы. Пошарив по интернету, на форуме «Радиокота» нашел схему, в которой использовался паяльник от паяльной станции Solomon или Lukey.

До этого все время паял таким паяльником, с понижающим блоком, без регулятора и естественно без встроенного термо-датчика:

Для будущей своей паяльной станции, прикупил уже современный паяльник со встроенным термо-датчиком (термопарой) BAKU907 24V 50W. В принципе подойдёт любой паяльник, какой Вам нравится, с термо-датчиком и напряжением питания 24 вольта.

И пошла потихоньку работа. Распечатал печатку для ЛУТ на глянцевой бумаге, перенёс на плату, протравил.

Сделал также рисунок для обратной стороны платы, под расположение деталей. Так легче паять, ну и выглядит красиво.

Плату делал размером 145х50 мм, под покупной пластиковый корпус, который уже был приобретён ранее. Впаял пока детали, какие были на тот момент в наличии.

R1 = 10 кОм
R2 = 1,0 МОм
R3 = 10 кОм
R4 = 1,5 кОм (подбирается)
R5 = 47 кОм потенциометр
R6 =120 кОм
R7 = 680 Ом
R8 = 390 Ом
R9 = 390 Ом
R10 = 470 Ом
R11 = 39 Ом
R12 =1 кОм
R13 = 300 Ом (подбирается)
C1 = 100нФ полиэстр
C2 = 4,7 нф керамика, полиэстр
C3 = 10 нФ полиэстр
C4 = 22 пф керамика
C5 = 22 пф керамика
C6 = 100нФ полиэстр
C7 = 100uF/25V электролитический
C8 = 100uF/16V электролитический
C9 = 100нФ полиэстр
С10 = 100нФ полиэстр
С11 = 100нФ полиэстр
С12 = 100нФ полиэстр
Т1 = симистор ВТ139-600
IC1 = ATMega8L
IC2 = отпрон МОС3060
IC3 = стабилизатор на 5 v 7805
IC4 = LM358P опер. усилитель
Cr1 = кварц 4 мГц
BUZER = сигнализатор МСМ-1206А
D1 = светодиод красный
D2 = светодиод зелёный
Br1 = мост на 1 А.

Для компактности плату сделал так, что Mega8 и LM358 будут располагаться за дисплеем (во многих своих поделках использую такой метод – удобно).

Плата, как уже говорил, имеет размер по длине 145мм, под готовый пластиковый корпус. Но это на всякий случай, т.к пока ещё не было силового трансформатора и в основном от него зависело, каким будет окончательный вариант корпуса. Или это будет корпус БП от компьютера, если трансформатор не влезет в пластиковый корпус, или если влезет, то готовый пластиковый покупной. По этому поводу заказал через интернет трансформатор ТОР 50Вт 24В 2А (они мотают на заказ).

После того, как трансформатор оказался дома, сразу стал ясен окончательный вариант корпуса для паяльной станции. По габаритам вполне должен был влезть в пластик. Примерил его в пластиковый корпус – по высоте подходит, даже есть небольшой запас.

Как уже говорил, что когда разрабатывал плату, то в первую очередь, конечно, учитывал размеры пластикового корпуса, поэтому плата в него подошла без проблем, только пришлось подрезать немного углы.

Переднюю панель для паяльной станции, как и в других своих поделках, сделал из акрила (оргстекла) 2мм. По оригинальной заглушке сделал свою. Пленку до окончания работы не снимаю, чтоб лишний раз не поцарапать.

Контроллер прошил, плату собрал. Пробные подключения готовой платы (пока без паяльника) прошли успешно.

ВНИМАНИЕ! Перед подключением своего LCD изучите даташит на него!! Особенно выводы 1 и 2!». Плата разводилась под LCD Winstar WH1602D. Даже у этого производителя у дисплеев между B и D есть разница.
На схеме индикатор, на вывод 1 которого подаётся +5V, а вывод 2 — общий!
Ваш индикатор может отличаться цоколёвкой этих выводов (1- общий; 2 — +питания).

Собираю все составные части паяльной станции в одно целое. Для паяльника поставил «Соломоновский» разъём (гнездо).

Подошло время для подключения самого паяльника и тут облом – разъём. Изначально в паяльнике был установлен такой разъём.

Пошёл в магазин за разъёмом. В магазинах у нас в городе ответной части не нашел. Поэтому в станции гнездо оставил, какое было, а на паяльнике разъём перепаял на наш советский от магнитофонов (СГ-5 вроде, или СР-5). Идеально подходит.

Теперь упаковываем всё в корпус, крепим окончательно трансформатор, переднюю панель, делаем все соединения.

Наша конструкция приобретает законченный вид. Получилась не большой, на столе займёт не много места. Ну и финальные фото.

Как работает станция, можно посмотреть это видео, которое я скинул на Ютюб.

Если будут какие нибудь вопросы по сборке, наладке — задавайте их ЗДЕСЬ, по возможности постараюсь ответить.

1. Определить где у паяльника нагреватель, а где термопара. Померить омметром сопротивление на выводах, там где сопротивление меньше, там и будет термопара (нагреватель обычно имеет сопротивление выше термопары, у термопары сопротивление единицы Ом). У термопары соблюсти полярность при подключении.
2. Если сопротивление у измеренных выводов практически не отличается (мощный керамический нагреватель), то определить термопару и её полярность ,можно следующим способом;
— нагреть паяльник, отключить его и цифровым мультиметром на самом малом диапазоне (200 милливольт) замерить напряжение на выводах паяльника. На выводах термопары будет напряжение несколько милливольт, полярность подключения будет видна на мультиметре.
3. Если на всех выводах паяльника измеренное сопротивление (попарно) больше 5-10-ти Ом (и более) на двух парных выводах (нагреватель и искомая термопара), то возможно у паяльника вместо термопары стоит терморезистор. Определить его можно с помощью омметра, для этого измеряем сопротивления на выводах, запоминаем, затем нагреваем паяльник. Снова измеряем сопротивление. Там где величина показаний изменится (от запомненного), там и будет терморезистор.
Ниже на рисунке показана распиновка разъёма «Соломоновского» паяльника

4. Подобрать значение R4.

В прикреплённом архиве находятся все необходимые файлы.

Архив для статьи

Источник

Оцените статью