Терморегулятор с гистерезисом своими руками

Простой терморегулятор своими руками

Огромное количество электрических приборов, используемых в быту и промышленности, основывают свою работу на определении уровня температуры окружающей среды. Измерительный элемент в них представляет собой датчик температуры, срабатывающий при нагревании или охлаждении до установленного уровня. Их можно приобрести в большинстве магазинов, ими комплектуются духовки, контроллеры и прочие устройства, но гораздо интереснее изготовить терморегулятор своими руками.

Пример простого терморегулятора

Далее мы рассмотрим принцип действия и варианты изготовления такой самоделки.

Немного теории

Любой терморегулятор конструктивно включает в себя три основных блока:

Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:

Рис. 1. Датчик из полуплеча резисторов

На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.

На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.

Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:

Рис. 2. Принципиальная схема терморегулятора

Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.

При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов происходит в соответствии с заданной логикой.

Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.

Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:

  • для контроля работы электрического отопления по температурным показаниям в помещении;
  • для установки уровня температуры в самодельном инкубаторе;
  • при подключении теплого пола для контроля его работы;
  • для установки температурного диапазона работы двигателя, с принудительным охлаждением или отключением системы при достижении граничного значения температуры;
  • для паяльных станций или ручных паяльников;
  • в системах охлаждения и холодильном оборудовании с логикой снижения температуры в определенных пределах;
  • в духовках, печах как бытового, так и промышленного назначения.

Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.

Обзор схем

В зависимости от типа элементов, входящих в состав терморегулятора, различают механические и цифровые терморегуляторы. Работа первых основана на срабатывании реле, вторые имеют электронный блок, управляющий процессами. Примеры работы нескольких схем рассмотрим далее.

Рис. 3. Схема терморегулятора №1

На приведенной схеме измерение происходит за счет резисторов R1 и R2, при температурных колебаниях переменный резистор R2 изменит величину падения напряжения. После чего через усилитель терморегулятора, представленный парой транзисторов, начнется протекание электротока через катушку реле K1.

Когда величина тока в соленоиде создаст магнитный поток достаточной силы, сердечник притянется и переключит контакты в другое положение. Недостатком такого терморегулятора является наличие магнитопроводящих частей, которые из-за гистерезиса вносят дополнительную поправку на температуру помимо измерительного органа.

Рис. 4. Схема терморегулятора №2

Данный терморегулятор, в отличии от механического термостата, не использует подключение реле, поэтому является более точным. Его применение оправдано в тех ситуациях, когда несколько градусов могут сыграть весомую роль, к примеру, при контроле температуры нагрева двигателя или в инкубаторе.

Здесь изменение температурного режима фиксируется резистором R5, благодаря которому терморегулятор изменяет электрические параметры работы. Для сравнения и усиления разницы поступающего с полуплеч электрического параметра применяется микросхема К140УД7.

Для контроля нагрузки в схеме устанавливается тиристор VS1, в данном примере терморегулятора ограничение составляет 150Вт, но при желании может подбираться и другой параметр. Но следует учитывать, что эксплуатация тиристора в качестве ключа приводит к его нагреванию, поэтому с увеличением мощности необходимо установить радиатор для лучшей теплоотдачи.

Создаем простой терморегулятор

При ремонте бытовой электротехники вы могли сталкиваться с ситуацией, когда со строя выходил терморегулятор. Хоть это и небольшая микросхема, устанавливаемая для контроля величины нагрева или охлаждения чего-либо.

Увы, стоимость такого элемента заводского изготовления довольно высока, поэтому куда выгоднее собрать терморегулятор самому. Схема достаточно простого самодельного терморегулятора приведена на рисунке ниже.

Рис. 5. Схема простейшего терморегулятора

Для его изготовления вам понадобится:

  • понижающий трансформатор с 220 на 12 В;
  • шесть диодов (в рассматриваемом примере используются IN4007);
  • конденсаторы на 47 мкФ, 1 мФ и 2 мФ;
  • микросхема для стабилизатора на 5В;
  • транзистор (в рассматриваемом примере это КТ814А);
  • стабилитрон с регулируемым параметром (TL431);
  • резистивные элементы на 4,7; 160, 150 и 910 кОм;
  • резистор с изменяемым сопротивлением на 150 кОм;
  • термозависимый резистор 50 кОм;
  • светодиод;
  • электромагнитное реле 100 мА с питающим напряжением 12В (в рассматриваемом примере используется автомобильный вариант);
  • кнопка и корпус.

Процесс изготовления состоит из таких этапов:

  • При помощи паяльника соберите вышеперечисленные детали на печатную плату, как показано на схеме выше.
  • После этого выведите измерительный орган для терморегулятора на открытое пространство, чтобы установить в нужную локацию.

Рис. 6. Выведите измерительный элемент

  • Установите переменный резистор на жесткий каркас и нанесите градуировку температурных режимов для настройки прибора.

Рис. 7. Установите регулятор на каркас и нанесите градуировку

  • На клеммник подключите шнур питания.

Подключите питающий шнур к клеммнику

В данном случае клеммник взят со старого прибора, располагавшегося в корпусе.

  • Подключите все отдельно размещенные элементы к плате и закройте корпусом.

После сборки терморегулятора его можно установить в любое место, к примеру, для обогрева и подключить в цепь питания электрического котла. В случае, когда радиаторы отопления нагреют помещение до установленной температуры, контакты реле разорвут цепь и прекратят электроснабжение. При остывании цифрового термометра, снова произойдет включение отопления и снова пойдет нагрев. Если вас не устраивает температурный режим, его можно изменить настройкой датчика.

Видео по теме


Источник

Термостат с регулируемым гистерезисом (CD4001)

У большинства схем термостатов есть некоторый гистерезис, — различие в температурах включения нагревателя и его выключения. Чем меньше гистерезис, тем точнее термостат поддерживает температуру, но при этом чаще происходит коммутация нагревательного прибора. Чем больше гистерезис, тем, соответственно, точность поддержания температуры ниже, но и коммутация нагревательного прибора происходит реже.

И здесь именно то, как часто включается / выключается нагревательный прибор имеет значение. Например, если выключателем нагревательного прибора служит реле, то имеет значение износ его контактов. Имеют значение также и помехи от коммутации нагревательного прибора.

Здесь приводится схема термостата, у которого можно регулировать не только среднее значение поддерживаемой температуры, но гистерезис. То есть, различие между порогом включения и порогом выключения.

Принципиальная схема

Температура регулируется переменным резистором R1. Гистерезис регулируется переменным резистором R3. Особенностью схемы является то, что в качестве компараторов в ней используются логические инверторы микросхемы К561ЛЕ5 (можно и К561ЛА7). А для управления состоянием выходного реле используется триггер Шмитта на двух элементах этой же микросхемы.

Цепи, задающие и измеряющие температуру в данной схеме объединены. Как уже сказано, компараторами служат логические элементы. И для этого используется их то свойство, что имеется определенный порог напряжения на входе, при котором происходит смена логического уровня на выходе.

То есть, как компараторы логические инверторы настроены на определенный порог срабатывания, который не регулируется. Поэтому регулирование и измерение приходится сводить в одну цепь.

Этой цепью здесь является делитель напряжения, состоящий из резисторов R1, R2, R3 и терморезистор RT1 (здесь используется терморезистор на номинальное сопротивление 4,7 кОм при температуре +25°С). Этот терморезистор является нижним плечом делителя напряжения, и благодаря ему напряжение на делителе зависит от температуры.

Но величина этого напряжения так же зависит и от сопротивления R1 и R2, которыми устанавливается температура, которую нужно поддерживать.

А резистор R3 задает разницу между напряжениями, поступающими на разные компараторы, сделанные на элементах D1.1 и D1.2. В результате напряжение на входах элемента D1.1 всегда больше напряжения на входах D1.2. И различие это зависит от сопротивления резистора R3.

Рис. 1. Схема термостата с регулируемым гистерезисом на микросхеме CD4001, К561ЛЕ5.

Если температура ниже нижнего предела, заданного вышеуказанным делителем, то напряжение на входах элемента D1.2 оказывается в зоне логической единицы. Так как элемент инверсный, то на его выходе возникает логический ноль. Он через резистор R4 и диод VD2 разряжает стабилизирующий конденсатор С2, и напряжение на входах элемента D1.3 падает.

Это приводит к переключению триггера Шмитта на элементах D1.3 и D1.4 и резисторе R5 в состояние, когда на выходе элемента D1.3 имеет высокий логический уровень.

Который поступает на затвор транзистора VT1. Тот открывается и посредством реле К1, включает нагревательный прибор (контакты реле, а так же сам нагревательный прибор и цепи его питания на схеме не показаны).

Начинается нагрев, и температура терморезистора RT1 повышается вместе с температурой среды, в которой нужно поддерживать заданную температуру. При повышении температуры сопротивление терморезистора RT1 снижается. Понижается при этом и напряжение на входах D1.2. И в какой-то момент оно оказывается уже в зоне логического нуля.

На выходе элемента D1.2 устанавливается логическая единица. Но на состояние триггера Шмитта на элементах D1.3 и D1.4 это не влияет, потому что диод VD2 закрывается и как бы этим отключает выход элемента D1.2 от входов элемента D1.3. Именно по этому на выходе D1.3 сохраняется логическая единица, и транзистор VТ1 остается открытым, а на нагреватель поступает питание через контакты реле К1.

Температура продолжает повышаться, а сопротивление терморезистора RT1 снижаться. Вместе с ним снижается и напряжение на выходе делителя. И в какой-то момент, напряжение на соединенных вместе входах элемента D1.1 оказывается в зоне логического нуля.

На выходе данного элемента устанавливается логическая единица. Которая через диод VD1 и резистор R7 поступает на конденсатор С2 заряжая его. Напряжение на С2 растет, и в определенный момент достигает порога единицы триггера Шмитта на элементах D1.3 и D1.4. Триггер Шмитта переключается.

На выходе элемента D1.3 устанавливается логический ноль. Транзистор VТ1 закрывается и реле К1 выключает нагреватель.

Детали и налаживание

При указанных на схеме данных делителя напряжения, температуру можно устанавливать в пределах от 20 до 30 °С. Гистерезесис (разница между температурой включения и выключения нагревателя) от нуля до 5°С.

Тип реле К1 зависит от мощности нагревательного прибора. Реле должно быть с обмоткой на 12V. Транзистор КП501 достаточно мощный для практически любого реле.

Можно вместо реле использовать оптосимистор, подключив его светодиод вместо обмотки реле, но через соответствующий токоограничительный резистор.

Источник

Читайте также:  Точечная сварка для алюминия своими руками
Оцените статью