- Терморегулятор вентилятора
- ОПИСАНИЕ
- ВИДЕО
- КОМПОНЕНТЫ
- Терморегулятор кулера блока питания своими руками
- Термостат для компьютерного вентилятора без микроконтроллера
- Терморегулятор оборотов кулера своими руками
- Режим работы
- Как сделать терморегулятор оборотов кулера на 12В, инструкция:
- Простота монтажа и компактность
- Терморегулятор для вентилятора своими руками
- Регулятор вентилятора с датчиком температуры
- Терморегулятор для вентилятора своими руками
- Регулятор скорости вентилятора — простая схема
- Способы регулировки
- МАТЕРИАЛЫ И КОМПОНЕНТЫ
- Как подключить?
- Делаем «умную» систему активного охлаждения для мини-компьютера или медиа-приставки
- Разновидности
- Ступенчатые модели с применением автотрансформатора
- Настройка параметров
- Принцип работы и предназначение
- Характеристики
- Как уменьшить или увеличить скорость вентилятора вытяжки
- Схема регулятора скорости вентилятора для уменьшения шума
- Калибровка и сброс
Терморегулятор вентилятора
ОПИСАНИЕ
ерморегулятор вентилятора на базе микроконтроллера AVR. Возможности:
- Оптимизирован под ATmega328 (Arduino NANO) и ATtiny85 (Digispark)
- Выход PWM 20 кГц
- Датчик: NTC термистор (с полной настройкой) или ds18b20
- Управление кнопкой
- 1x клик: вкл/выкл
- 2x клик: задать минимальную температуру
- 3x клик: задать максимальную температуру
- 4x клик – сброс на “стандартные” MIN_TEMP и MAX_TEMP
- Плавное включение/выключение/регулирование
- Сигнализация о перегреве
- Линейный закон скорости от температуры
ВИДЕО
КОМПОНЕНТЫ
Каталоги ссылок на Алиэкспресс на этом сайте:
Стараюсь оставлять ссылки только на проверенные крупные магазины, из которых заказываю сам. Также по первые ссылки ведут по возможности на минимальное количество магазинов, чтобы минимально платить за доставку. Если какие-то ссылки не работают, можно поискать аналогичную железку в каталоге Ардуино модулей . Также проект можно попробовать собрать из компонентов моего набора GyverKIT .
Источник
Терморегулятор кулера блока питания своими руками
Форум радиолюбителей » СХЕМЫ » АВТОМАТИКА » Схемы управления кулерами (Приампы для кулеров охлажения радиаторов) |
Схемы управления кулерами
Вс, 01.12.2013, 14:25 | Сообщение # 1 |
ГУБЕРНАТОР В данной ветке хотелось бы собрать массив схем с описанием работы управления кулерами охлаждающих радиаторы выходных каскадов УНЧ. — Измерение температуры от -55°С до +125°С (шаг 0,1°С)
«*» обозначены компоненты необходимые для защиты от статического Кнопками «+» и «-» устанавливают температуру включения нагрузки (на экране в В первом сегменте отображается точка, если Т Третий вариант управления: Подстроечными резисторами R3 и R9 устанавливают пороги срабатывания ступеней охлаждения. Светодиод HL1 – индикатор, причем его яркость сигнализирует о напряжении на вентиляторе, а, следовательно, и о температуре. При желании получить больше информации, узел индикации можно усложнить, применив, например, два светодиода с разным цветом свечения. Если необходимо контролировать температуру нескольких радиаторов, то можно использовать несколько однотипных термисторов, включенных параллельно (пропорционально уменьшив сопротивление R2). При этом, вследствие нелинейности температурной характеристики, система будет в большей степени реагировать на наиболее горячий объект, что повысит надежность устройства в целом. Схему можно питать и от источника с меньшим напряжением, но при этом снизится максимальная эффективность охлаждения. Биполярные транзисторы – любые маломощные с коэффициентом h21Э не менее 150, например, КТ3102 (я использовал импортные ВС546В). Полевые транзисторы – любые средней мощности. Из отечественных подойдут КП740-КП743. Можно использовать и маломощные КП505А-В, однако ток вентилятора в этом случае не должен превышать 150 мА. Из импортных подойдут практически все транзисторы серий IRF5хх, IRF 6хх. Стабилитрон VD1 должен выдерживать ток вентилятора, который при пониженном напряжении питания составляет 40…50% от номинального (а это порядка 50. 150 мА). Напряжение стабилизации выбирается таким образом, чтобы напряжение на двигателе составляло 5…6 вольт (т.е. 6. 10 вольт). При более низком напряжении не все вентиляторы устойчиво работают, более высокое напряжение увеличит уровень шума. Если не удастся подобрать подходящий стабилитрон, можно воспользоваться его аналогом Поскольку основным для усилителя все же является пассивное охлаждение, то следует использовать «конвекционные» (обыкновенные) радиаторы с редкими толстыми ребрами. Вентилятор – корпусной вентилятор подходящего размера от компьютера. Процессорные вентиляторы использовать не рекомендуется, несмотря на их больший воздушный поток – они более шумные. Термистор необходимо установить так, чтобы обеспечивался хороший тепловой контакт с радиатором (с использованием термопасты), и на него не попадал воздушный поток от вентилятора. Поскольку температура внутри корпуса усилителя может достигать 40…50 градусов, возможна установка дополнительного вентилятора, выдувающего воздух из корпуса. Все вентиляторы включаются параллельно. Пятый вариант управления: Предлагаемое устройство при более простой схеме лишено этого недостатка. В паузах и при малом уровне громкости вентилятор работает на пониженных оборотах, практически не производя шума. При возрастании громкости вентилятор включается на полную мощность, но его шум теперь маскируется акустическим сигналом. Выходное напряжение с УМЗЧ подаётся на вход устройства через делитель R1R2. Подстроечным резистором R2 регулируют порог срабатывания устройства. Выпрямленное диодом VD1 напряжение звуковых сигналов при увеличении их уровня заряжает конденсатор С1. Через резистор R3 он разряжается при уменьшении уровня входного сигнала. Стабилитрон VD2 ограничивает напряжение, подаваемое на затвор, на безопасном для транзистора VT1 уровне. При достижении порогового уровня напряжения на конденсаторе С1 транзистор открывается, увеличивая ток через двигатель до номинального. При снижении уровня выходного сигнала УМЗЧ конденсатор С1 быстро разряжается через резистор R3, транзистор закрывается и двигатель М1 переходит на работу при пониженных оборотах. Диод VD3 защищает транзистор от реакции нагрузки (обмотки двигателя). Если двигатель бесколлекторный, этот диод можно исключить. К деталям особых требований не предъявляется, резисторы и конденсаторы могут быть любых типов. Диоды VD1 и VD3 — любые маломощные кремниевые, например, КД509А, КД510А, Д220. Стабилитрон VD2 — на напряжение стабилизации 7. 10 В, например, Д814А, КС175А. При токе, потребляемом двигателем свыше 0,5 А, необходимо применить более мощный транзистор, например, IRFZ44N или отечественный КП812А1. Налаживание устройства заключается в подборе резистора R4 для обеспечения работы вентилятора с допустимым уровнем шума и конденсатора С2 для надёжного запуска электродвигателя. При увеличении ёмкости конденсатора следует иметь в виду, что разряжается он через малое сопротивление сток-исток транзистора VT1, и для исключения повреждения транзистора последовательно с конденсатором большей ёмкости целесообразно включить резистор сопротивлением несколько ом. Шестой вариант управления аналогичен по сути пятому: Сигнал с выхода усилителя мощности подается на инвертирующий вход компаратора DA1.1 через резистор R1. Стабилитрон VD2 защищает вход компаратора от отрицательного напряжения, поступающего от усилителя мощности при усилении отрицательных полупериодов сигнала. На элементах R2 и VD1 собран параметрический стабилизатор, который задает порог срабатывания компаратора. Резистор R3 служит нагрузкой выходного каскада DA1.1, выполненного по схеме с открытым коллектором. Конденсатор С1 и резистор R4 задают время задержки выключения вентилятора. Диод VD3 необходим для предотвращения разрядки конденсатора С1 через резистор R3. Задержка позволяет сохранить напряжение на вентиляторе еще некоторое время для удаления выделившейся на теплоотводе энергии. Подстроечным резистором R5 можно регулировать время задержки выключения. Сигнал с выхода компаратора DA1.2 управляет транзистором VT1, включающим вентилятор охлаждения. вот пару схем, с микросхемой и на транзисторах: Источник Термостат для компьютерного вентилятора без микроконтроллераТерморегулятор оборотов кулера своими рукамиСегодня соберём очень простой терморегулятор оборотов кулера всего на трёх деталях своими руками. Эта самоделка будет полезна если Вы делаете например, блок питания и нужно чтобы при большой нагрузке, когда начинают разогреваться силовые транзисторы включался кулер для принудительного активного охлаждения этих транзисторов, ну а также он будет полезен и для других устройств и самоделок, таких как электронная нагрузка. Терморегулятор оборотов кулера своими руками Терморегулятор оборотов кулера своими руками Терморегулятор оборотов кулера своими руками Терморегулятор оборотов кулера своими руками Режим работы
За работу прибора отвечает встроенный микропроцессор и специально созданное программное обеспечение. Уникальный алгоритм постоянно анализирует состояние среды и поддерживает её на оптимальном уровне, отображая текущее значение температуры на дисплее. Программное обеспечение, разработанное инженерами нашего предприятия, делает терморегулятор очень простым и поистине идеальным вариантом решения для регулировки температуры. Как сделать терморегулятор оборотов кулера на 12В, инструкция:Делать терморегулятор будем по этой схеме: Терморегулятор оборотов кулера своими руками Транзистор устанавливаем маркировкой вверх. Терморегулятор оборотов кулера своими руками К крайним выводам припаиваем подстроечный резистор, он будет регулировать температуру срабатывания терморегулятора. Третья ножка резистора просто загнута, она не используется. Терморегулятор оборотов кулера своими руками Припаиваем к левой ножке транзистора IRFZ44N терморезистор. Терморегулятор оборотов кулера своими руками Ко второму выводу терморезистора припаиваем плюсовой вывод кулера. Терморегулятор оборотов кулера своими руками Минусовой вывод кулера припаиваем к средней ножке транзистора. Терморегулятор оборотов кулера своими руками Теперь присоединяем провода питания для работы терморегулятора для кулера, плюс 12 В подаём на левую ножку транзистора, а минус на правую. Терморегулятор оборотов кулера своими руками Устройство готово к работе, теперь можно например, взяться пальцами за терморезистор и крутя подстроечный резистор добиваемся срабатывания терморегулятора, в это время начинает крутиться кулер. Терморегулятор оборотов кулера своими руками Терморегулятор оборотов кулера своими руками Подстроечным резистором можно добиться срабатывания схемы при гораздо большем нагреве, всё подстраивается под свои нужды. При необходимости можно выставив необходимый режим выпаять подстроечный резистор, измерить его выставленное ранее сопротивление и впаять вместо него постоянный резистор близкого номинала к измеренному значению. Простота монтажа и компактностьТерморегулятор, разработанный в лаборатории Mega Systems, предельно прост в установке и подключении. Его монтаж может выполнить каждый человек, имеющий самые общие понятия об электротехнических изделиях и схемах подключения устройств к сети. Главное – подвести линию переменного тока к месту монтажа.
Терморегулятор для вентилятора своими рукамиСегодня рассмотрим принцип действия системы охлаждения радиатора, а точнее систему управления вентилятором. Вентилятор в автомобиле служит для охлаждения двигателя при его нагреве, однако постоянная работа вентилятора совсем не требуется, во-первых, она бессмысленна, когда радиатор не требует дополнительного охлаждения, во-вторых постоянная работа вентилятора сильно нагружает бортовую сеть, что также ни есть хорошо. Поэтому нам необходимо обеспечить включение вентилятора при определенном нагреве радиатора (или жидкости в нем). Сама схема представлена на чертеже ниже, помимо включения при определенном нагреве схема обеспечивает плавное включение вентилятора и уменьшает звуковые шумы, что хорошо скажется на сроке службы вентилятора. Основным элементом в схеме является терморезистор с отрицательным коэффициентом температурной зависимости. Рабочее сопротивление 5-50 кОм все зависит от марки терморезистора. Терморезистор приваривается непосредственно к радиатору. Операция очень ответственная, терморезистор обязательно должен касаться радиатора, при плохой сварке потом придется все переделывать, поэтому этому моменту уделяем особое внимание. Все номиналы или их определение расписано в схеме, для подбора R1 замеряем мультиметром значение сопротивления терморезистора делим на 5. Полученный результат даст вам понять примерный диапазон значения переменного резистора. Устанавливаем необходимые значения резистора, распаиваем схему и начинаем отладку работы прибора. Показанная на схеме RC цепочка указана штрихпунктирной линией, потому что не всегда требуется. В случае если при отладке схема будет «хондрить» ее надо будет довесить. Вращая переменный резистор и измеряя сторонним прибором температуру радиатора выставляем необходимую нам температуру включения вентилятора.
Регулятор вентилятора с датчиком температурыКак известно, вентилятор в блоках питания компьютеров формата AT вращается с неизменной частотой независимо от температуры корпусов высоковольтных транзисторов. Однако блок питания не всегда отдает в нагрузку максимальную мощность. Пик потребляемой мощности приходится на момент включения компьютера, а следующие максимумы — на время интенсивного дискового обмена.
Если же учесть ещё и тот факт, что мощность блока питания обычно выбирается с запасом даже для максимума энергопотребления, нетрудно прийти к выводу, что большую часть времени он недогружен и принудительное охлаждение теплоотвода высоковольтных транзисторов чрезмерно. Иными словами, вентилятор впустую перекачивает кубометры воздуха, создавая при этом довольно сильный шум и засасывая пыль внутрь корпуса. Уменьшить износ вентилятора и снизить общий уровень шума, создаваемого компьютером можно, применив автоматический регулятор частоты вращения вентилятора, схема которого показана на рисунке. Датчиком температуры служат германиевые диоды VD1–VD4, включенные в обратном направлении в цепь базы составного транзистора VT1VT2. Выбор в качестве датчика диодов обусловлен тем, что зависимость обратного тока от температуры имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания.
Резистор R1 исключает возможность выхода из строя транзисторов VT1, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора. Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1, VT2. Если при указанном на схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить. Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения окажется значительно больше требуемой, число диодов следует уменьшить. Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу. Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 с припаянными к его выводам резисторами R1, R2 и транзистором VT1 устанавливают выводом эмиттера в отверстие «-cooler» платы блока питания. Терморегулятор для вентилятора своими рукамиТранзистор нужен мощный, поскольку он является силовой частью регулятора и при подключении мощных вентиляторов через него будет протекать большой ток. Термистор работает в качестве датчика температуры. Подстроечный резистор на 10 кОм желательно взять многооборотный, для более точной настройки устройства.
Система идеально подходит для старых отечественных автомобилей, где вентилятор вращается независимо от температуры воды в двигателе. Полевой транзистор можно заменить на более мощный, к примеру IRZF44, IRFZ40, IRFZ46, IRFZ48, IRL3705, IRF3205 и другие – последний довольно мощный, рассеиваемая мощность на этом транзисторе составляет 200 ватт. В любом случае, транзистор нужно будет укрепить на теплоотвод, его просто можно укрепить к кузову автомобиля – через изолирующие пластинки и шайбы (обязательно), при маломощных нагрузках до 50 теплоотвод не потребуется. Медленно вращая переменный резистор добиваемся нужной степени температурного срабатывания системы. Как известно, термисторы бывают двух основных видов – с положительным и отрицательным температурным коэффициентом. В случае первого при повышении температуры сопротивление возрастает, а с отрицательным коэффициентом – уменьшается. В моем опыте был использован термистор с положительным коэффициентом температуры, поскольку второй разновидности под рукой в тот момент не оказалось. Когда термистор нагревается до определенного уровня, то его сопротивление резко возрастает и прекращается подача тока на затвор силового ключа, в следствии чего, полевой ключ закрывается, при прекращении нагрева сопротивление термистора уменьшается (в моем случае 220-230 Ом, при комнатной температуре порядка 19гр) и опять возобновляется подача тока на затвор ключа, последний открывается, подавая напряжение на вентилятор.
Подключив вместо вентилятора электромагнитное реле на нужное напряжение и ток, мы можем управлять довольно мощными сетевыми нагрузками. Один из примеров – автоматическое включение обогревателя, когда температура в комнате ниже нормы и его выключение, когда на комнате уже жара. Аналогичное устройство можно построить и на биполярных транзисторах, с применением германиевых диодов вместо термодатчиков, но об этом поговорим в другой раз. Спасибо за внимание.
Регулятор скорости вентилятора — простая схемаПредлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814. Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов. Она имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор. Список необходимых радиоэлементов:
Плата регулятора скорости вентилятора: Фото готового регулятора скорости вентилятора: Способы регулировкиДля электрических вытяжек, устанавливаемых в жилых помещениях (на кухне, а также в туалетных и ванных комнатах) предусматривается простейший вариант управления. В этом случае возможны только два состояния: включено или выключено. Для более экономичной работы устройства (не всегда нужно, чтобы оно работало на полную мощность) потребуется регулировать обороты вентилятора. Перед покупкой изделия обязательно проконсультируйтесь у продавца о наличии соответствующей опции. Реализовать указанную функцию удается следующими способами: На практике регулировка осуществляется посредством особых устройств (контроллеров), в которых применяются различные принципы управления. МАТЕРИАЛЫ И КОМПОНЕНТЫСсылки на магазины, с которых я закупаюсь уже не один год Вам скорее всего пригодится:
Первые ссылки по возможности оставлены на одного и того же продавца, чтобы сэкономить на доставке. Остальные ссылки – резервные. Нажимайте ссылки колёсиком мыши, чтобы открыть в новом окне!
Как подключить?Выполнить подключение контроллера скорости к вентилятору можно своими руками. Для этого необходимо внимательно прочитать инструкцию и соблюдать ряд мер безопасности при работе с электроприборами. В зависимости от вида конструкции и вида обслуживаемых вентиляторов, контроллеры могут быть установлены на стене, внутри стены, внутри вентустановки или в отдельно стоящем шкафу системы «умный дом». Настенный и внутристенный регуляторы закрепляются при помощи шурупов или дюбелей, в зависимости от габаритов и веса устройства. Крепёжные элементы обычно входят в комплект наряду со схемой подключения прибора. Схемы подключения у моделей могут отличаться, однако, общие закономерности и последовательность выполнения действий всё же есть. Вначале контроллер нужно подключить к кабелю, подающему ток на вентилятор. Основной целью данного этапа является разделение проводов «фаза», «ноль» и «земля». Затем выполняют подсоединение проводов к входным и выходным клеммам. Главное при этом — не перепутать провода местами и выполнить подключение согласно инструкции. Кроме того, следует проконтролировать, чтобы размер сечения кабеля питания и соединения соответствовал максимально разрешённому напряжению подключаемого устройства. При подключении регулятора скорости к вентиляторам ноутбука напряжением 12 вольт необходимо выяснить предельно допустимые температуры деталей устройства. Иначе можно лишиться компьютера, у которого от перегрева выйдут из строя процессор, материнская плата и графическая карта. При подключении контроллера к оргтехнике необходимо также строго следовать инструкции. При необходимости подключения сразу нескольких вентиляторов лучше приобрести многоканальный регулятор, так как некоторые модели способны обслуживать до четырёх вентиляторов одновременно.
Регуляторы скорости вентиляторов являются важным многофункциональными устройством. Они защищают технику от перегрева, продлевают срок эксплуатации электрических двигателей вентиляторов, экономят электроэнергию и существенно понижают уровень шума в помещениях. Благодаря своей эффективности и практичности приборы обретают всё большую популярность и растущий потребительский спрос. О том, как своими руками сделать регулятор скорости вентилятора, смотрите далее. Делаем «умную» систему активного охлаждения для мини-компьютера или медиа-приставкиМногие мини-компьютеры или медиа-приставки используют пассивную систему охлаждения. Это могут быть устройства с процессорами Intel Atom и ОС Windows или множество моделей с Android. У части этих устройств есть одна общая проблема — неэффективная система охлаждения. При продолжительной нагрузке и превышении определённого порога температуры начинается троттлинг — процессор начинает снижать частоту, отключать ядра и пр. Производительность падает. Иногда это не сильно заметно, а иногда мешает комфортной работе с устройством. Производители просто не уделяют системе охлаждения достаточно внимания, считая троттлинг нормальным поведением стационарных систем. Посмотрите, например, тематические форумы, там чуть ли не в каждой второй теме мини-компьютеров или медиа-приставок обсуждаются вопросы модификации системы охлаждения. Изначально пытаются решить проблему доработкой пассивного охлаждения. Если это не удаётся, переходят к активному охлаждению с помощью вентилятора. Я расскажу, как сделать простое «умное» активное охлаждение с минимальными затратами.
Программируемый терморегулятор W1209
Комплект поставки: терморегулятор и датчик температуры.
Программировать терморегулятор просто, настройки сохраняются. Нажимаете кнопку SET и с с помощью кнопок + и — выставляете температуру срабатывания. Если держать кнопку SET 5 секунд, то попадёте в меню настроек:
Повышающий преобразователь
Для демонстрации я буду использовать вентилятор на 12 В, но подавать на него буду напряжение 5 В. В реальной ситуации так делать не нужно, т.к. эффективность слабая. Вентилятор должен быть рассчитан на напряжение 5 В. Для питания я буду использовать обычный кабель USB, но в реальной ситуации нужно подключить (припаять) провода к внутренним контактам USB на плате медиа-приставки.
Если вы будете использовать вентилятор на 12 В, то его нужно коммутировать к выходам на преобразователе. Т.к. ток слабый во всей схеме, используйте тонкие гибкие провода для соединения. Для демонстрации я использовал толстые. Дополнительно можете залить термоклеем места пайки для надёжности, нагрева со слабой нагрузкой там нет. Пайку проводов нужно изолировать с помощью термоусадки или изоленты. При необходимости укоротите провод датчика температуры до нужной длины. Готовая демонстрационная система:
Размещаете конструкцию внутри корпуса мини-компьютера или медиа-приставки. Датчик температуры крепите к радиатору SoC. Например, вы можете установить температуру включения вентилятора 70 ºС, а гистерезис 15 ºС. В обычном режиме, при просмотре видео, просмотре веб-страниц и пр., будет использоваться пассивное охлаждение. Но при нагрузке, например, играми, как только радиатор нагреется до 70 ºС, вентилятор включится и будет работать до тех пор, пока температура не опустится ниже 55 ºС. В итоге за 2,5$ и 30 минут работы мы добавили немного «мозгов» активной системе охлаждения. Минус у этой системы только один — электромеханическое реле, которое издаёт щелчок при замыкании контактов (включение вентилятора). Идеально было бы его заменить на твердотельное реле или транзистор, чтобы работало бесшумно, но это уже другая история… РазновидностиРегуляторы ограничения скорости вентилятора бывают нескольких видов. Ступенчатые модели с применением автотрансформатораСуть работы этого прибора заключается в том, что обмотка прибора разветвлена, поэтому в процессе подключения к ответвлениям вентилятор получает несколько пониженное напряжение. При помощи специального переключателя тот или иной вентилятор подключается к нужному участку обмотки, а скорость его вращения падает. Синхронно с этим снижается потребление электричества, что приводит к общей экономии ресурса. Настройка параметровТерморегулятор имеет возможность точной регулировки параметров включения и выключения обогревателя или охладителя, а дисплей отображает текущее значение температуры.
Принцип работы и предназначениеВо время постоянной работы вентилятора на максимальных оборотах, ресурс прибора исчерпывается достаточно быстро. В результате мощность устройства заметно снижается, а прибор выходит из строя. Это обусловлено тем, что многие детали не способны выдерживать такой ритм, из-за чего они быстро изнашиваются и ломаются. Чтобы ограничить скорость вращения лопастей и увеличить срок службы вентилятора, в вентиляционную установку встраивают контроллер скорости. Помимо сбережения рабочего ресурса, контроллеры выполняют важную функцию по снижению шума от работающих вентиляционных систем. Так, в офисных помещениях, где наблюдается большое скопление оргтехники, уровень шума может достигать 50 ДБ, что обусловлено одновременным функционированием нескольких устройств, вентиляторы которых работают на максимальных оборотах. В таких условиях человеку сложно настроиться на рабочий лад и сосредоточиться. Выходом из сложившейся ситуации является оснащение вентиляционных установок регуляторами скорости. Ещё одним веским аргументом в пользу использования регуляторов является экономный расход электроэнергии. В результате уменьшения количества оборотов и снижения общей мощности вентилятор начинает потреблять меньше энергии, что положительно сказывается на бюджете. Принцип действия контроллера заключается в изменении напряжения, которое подаётся на обмотку двигателя вентилятора. Существуют более дорогостоящие модели, способные регулировать скорость вращения посредством изменения частоты тока. Однако стоимость таких изделий зачастую превышает стоимость самого вентилятора, из-за чего их установка является нецелесообразной. Характеристики110 °C Как уменьшить или увеличить скорость вентилятора вытяжкиВ вытяжных системах увеличение или снижение скорости вращения вентилятора позволяет изменять интенсивность потока, влияющую на воздухообмен в целом. Для управления им используется один из уже рассмотренных способов (путем изменения напряжения или частоты тока).
На практике применяется первый из приемов, так как частотный регулятор в данном случае будет стоить дороже самого вентилятора Особенность этого способа заключается в его простоте и дешевизне, что очень важно для бытовых систем и устройств, применяемых в помещениях общественного пользования Увеличить или уменьшить скорость вытяжки удается простым механическим способом. Для этого в некоторых образцах модулей управления предусматривается небольшое колесико, посредством которого ступенчато или плавно меняются обороты двигателя. Схема регулятора скорости вентилятора для уменьшения шумаВ отличии от схемы, которая замедляет обороты вентилятора после старта (для уверенного запуска вентилятора), данная схема позволит увеличить эффективность работы вентилятора путем увеличения оборотов при повышении температуры датчика. Схема также позволяет уменьшить шум вентилятора и продлить его срок службы. Необходимые для сборки детали:
Настройка производится до закрепления термодатчика на радиаторе. Вращая R1, добиваемся, чтобы вентилятор остановился. Затем, вращая в обратную сторону, заставляем его гарантированно запускаться при зажимании терморезистора между пальцами (36 градусов). Если ваш вентилятор иногда не запускается даже при сильном нагреве (паяльник поднести), то нужно добавить цепочку С1, R2. Тогда R1 выставляем так, чтобы вентилятор гарантированно запускался при подаче напряжения на холодный блок питания. Через несколько секунд после заpяда конденсатора, обороты падали, но полностью вентилятор не останавливался. Теперь закрепляем датчик и проверяем, как все это будет крутится пpи реальной работе. Rt — любой терморезистор с отрицательным ТКЕ, например, ММТ1 номиналом 10–30 кОм. Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку (лучше слюдяную) к радиатору высоковольтных транзисторов (или к одному из них). Видео о сборке регулятора оборотов вентилятора: Калибровка и сбросИнженерами лаборатории Mega Systems предусмотрена возможность калибровки терморегулятора. Допустим у вас уже установлен датчик, который отображает 30 С. После установки нашего прибора вы обнаружили, что показания на нем 32 С и вы хотели бы выровнять значения обоих устройств. Для этого необходимо:
Терморегулятор – эффективно, экономно и очень удобно! Источник |