- Как сделать тепловизор из фотоаппарата: как переделать, видео
- Для чего можно использовать самодельный тепловизор
- Как сделать тепловизор из цифрового фотоаппарата своими руками
- Подготовка материалов и инструментов
- Как переделать фотоаппарат в тепловизор
- Заключение
- Недорогой тепловизор своими руками
- Тепловизор на FLIR Lepton своими руками
- Немного теории
- Что такое FLIR Lepton?
- Собираем тепловизор
- Корпусирование и батарейное питание
- Режимы съемки
- Библиотеки
- Измерение температуры
- Дальнейшее развитие
Как сделать тепловизор из фотоаппарата: как переделать, видео
Тепловизор из фотоаппарата своими руками можно сделать без особенного опыта, если четко следовать инструкции. Фактически техника не нуждается в доработке, наоборот, ее нужно избавить от лишних элементов.
Для чего можно использовать самодельный тепловизор
Любые живые и неживые объекты с температурой поверхности выше нуля излучают тепло. Различить его невооруженным взглядом нельзя, поскольку речь идет о свечении в инфракрасном диапазоне. Но зато увидеть такое излучение позволяет специальный прибор — тепловизор. Он предоставляет цветную картинку, где теплые объекты выделены цветами от фиолетового до красного в зависимости от конкретной температуры.
Стоимость профессиональных тепловизоров довольно высокая, но полезный прибор можно сделать самостоятельно из старой техники, например, из цифрового фотоаппарата.
Тепловизор может пригодиться для нескольких целей.
- Контроль за утечками тепла. При помощи прибора можно оценить качество теплоизоляции и выяснить, где именно наблюдаются резкие температурные перепады.
- Диагностика утечки энергии. Тепловизор поможет установить слабые места электроприборов, понять, где происходит излишний нагрев проводников, вызванный плохим контактом.
- Ночное видение. Тепловизор из старого фотоаппарата может оказаться очень полезным на темной улице или в лесу, поскольку поможет обнаружить людей и теплые объекты.
Также устройства инфракрасного спектра применяют в машиностроении, металлургии, в медицине и при спасательных операциях. Но здесь речь идет уже о профессиональных приборах с высоким уровнем надежности и расширенным функционалом.
Как сделать тепловизор из цифрового фотоаппарата своими руками
Сделать тепловизор из старого фотоаппарата довольно просто, поскольку модернизировать устройство фактически не придется. Матрица фототехники изначально способна воспринимать инфракрасное излучение.
Фотоаппарат для изготовления тепловизора берут цифровой, в слишком старых моделях нужной матрицы нет
Но поскольку для создания снимков такая функция не нужна, еще на заводе в девайс устанавливают тепловой фильтр, отражающий или поглощающий ИК-спектр. В результате на экране фотоаппарата пользователь видит только то, что и так воспринимает человеческий глаз. Таким образом, для превращения девайса в тепловизор достаточно просто извлечь ИК-заглушку.
Подготовка материалов и инструментов
Чтобы сделать тепловизор из старого фотоаппарата, понадобится подготовить некоторые инструменты и расходные материалы:
- цифровую фототехнику с жидкокристаллическим дисплеем, так называемую мыльницу, обязательно в рабочем состоянии;
- инфракрасные светодиоды с мощностью 2-5 Вт в количестве двух штук;
- радиаторы для охлаждения светодиодов;
- кнопку включения и выключения;
- модуль повышения или понижения напряжения;
- пальчиковую батарейку 1,5 В формата АА;
- маленький пинцет;
- малярный нож;
- отвертку со сменными насадками для очень маленьких винтов;
- паяльник;
- клеевой пистолет.
Расходные материалы и инструменты дешевые и доступные, приобрести их можно на радиорынке или через Интернет.
Как переделать фотоаппарат в тепловизор
Переделка фотоаппарата в тепловизор не представляет особенных сложностей, если следовать проверенному алгоритму:
- На фотоаппарате откручивают все видимые винтики, а потом аккуратно снимают крышку, прикрывающую заднюю панель и края жидкокристаллического дисплея. После этого демонтируют сам экран, отомкнув его от придерживающей рамки, и отсоединяют от внутренней платы электронные шлейфы.
Шлейфы скрепляют части фотоаппарата, без их отключения нельзя разобрать девайс
- С устройства снимают переднюю крышку и демонтируют провод микрофона. С осторожностью нужно обращаться с высоковольтным конденсатором вспышки. Его контакты необходимо замкнуть тестером или вольтметром, не прикасаясь к элементу руками.
Высоковольтный конденсатор на плате способен довольно сильно ударить током при касании
- Нужная светочувствительная матрица расположена рядом с объективом фотоаппарата. Чтобы добраться до нее, необходимо открутить при помощи отвертки удерживающие винты и снять весь блок. После этого инфракрасный фильтр аккуратно поддевают пинцетом за край и отделяют от матрицы.
Инфракрасный фильтр на свету будет слегка зеленоватым
- На место демонтированного фильтра устанавливают простое тонкое стекло или прозрачную пленку. Этот этап можно пропустить, поскольку воспринимать ИК-излучение самодельный прибор в любом случае будет. Но видео о тепловизоре своими руками из фотоаппарата рекомендует все-таки установить фильтр, если хочется сохранить функцию автофокуса. Без стекла или пленки эта опция пострадает.
Самодельный прозрачный фильтр можно вырезать из защитной пленки для экрана смартфона
- Дальше можно приступать к обратной сборке самодельного тепловизора из фотоаппарата. Блок со светочувствительной матрицей устанавливают над объективом на прежнее место и фиксируют винтами.
Затянуть винты нужно максимально плотно, чтобы матрица не «люфтила»
- На место устанавливают также плату управления, закрепляют винты. Вставляют в нужный отсек конденсатор вспышки и паяльником восстанавливают нарушенные контакты.
При обратной сборке нужно соблюдать максимальную внимательность и не оставлять «лишних» деталей
- Шлейфы электронной платы подключают в соответствующие разъемы, после чего возвращают на место посадочную рамку и жидкокристаллический экран.
Перед обратной установкой корпуса нужно убедиться, что никакие шлейфы и другие запчасти не забыты
- Переднюю и заднюю крышку монтируют на место, после чего закручивают последние оставшиеся винты и проверяют устройство на работоспособность. Затем можно переходить к следующему этапу — для тепловизора нужно организовать подсветку. Для этого к подготовленной пальчиковой батарейке подключают резистор и снижают напряжение до 1,7 В.
Исходное напряжение в элементе питания слишком высокое — 2,8 В
- Светодиоды промазывают теплопроводящей пастой и припаивают к радиаторам по контактам. Нужно проконтролировать, чтобы лампочки плотно прижимались к поверхности, иначе в процессе работы они будут перегреваться. Фотоаппарат снова разбирают и снимают заднюю крышку, чтобы установить на свободное место кнопку для включения и выключения инфракрасной подсветки.
Кнопку можно взять без фиксации — это поможет экономить заряд батарейки
- На последнем этапе внутри корпуса прокладывают провода, которые соединят между собой кнопку, подсветку и питание. Радиаторы с закрепленными инфракрасными светодиодами приклеивают на передней крышке тепловизора по сторонам объектива. Сверху прикрывают пластиковой заглушкой с проделанными для лампочек отверстиями. Корпус собирают окончательно, а выведенные наружу провода прикрепляют к внешнему резистору.
Чтобы резистор не висел на проводах, его можно приклеить к торцевой стенке или дну тепловизора
Необходимо отметить, что самодельный тепловизор на основе старого фотоаппарата не будет обладать высокой чувствительностью. Яркой и контрастной цветной картинки он не даст, и использовать его для измерения температуры не получится. Но предоставлять отчетливое изображение в полной темноте домашний прибор сможет, и инфракрасное свечение достаточно мощных объектов, расположенных вблизи, тепловизор тоже зафиксирует.
Заключение
Тепловизор из фотоаппарата своими руками по функциональности сильно уступит покупному. Но в ближнем инфракрасном спектре он работать будет и особенно хорошо станет действовать в качестве прибора ночного видения.
Источник
Недорогой тепловизор своими руками
Тепловизор — прибор для измерения распределения температуры поверхностей, бесконтактным, визуальным способом. Как правило, карта распределения температуры отображается на встроенном в тепловизор цветном дисплее (или последующая передача данных в компьютер) в виде цветного изображения, где красный цвет обозначает наиболее высокотемпературные участки, а черный или синий — низкотемпературные участки. Такие приборы стоят очень дорого (несколько тысяч долларов) и позволяют определять температуры динамических (движущихся объектов) в режиме реального времени.
Но, такой функционал нужен не всегда и в данной статье описывается процесс изготовления самодельного сканирующего тепловизора, стоимость которого не превышает 200$. Процесс сканирования объекта занимает примерно с минуту. Данный тепловизор подойдет для съемки статических обьектов.
В устройстве используется два сервопривода (для перемещения по горизонтали и вертикали), контроллер Arduino (для обработки сигналов и передачи данных в персональный компьютер), лазерный модуль или лазерная указка (чтобы вы видели зону сканирования), сам модуль бесконтактного датчика температуры MLX90614ESF, корпус и поворотное устройство.
Примеры изображений карты температуры поверхностей, полученных с данного тепловизора:
Список используемых элементов:
Модуль Laser Card — 8$ (можно заменить лазерной указкой):
Поиск модуля на AliExpress, модуль на Sparkfun
Вебкамера Microsoft LifeCam VX-700
Поворотное устройство (2 координаты) Lynxmotion Pan and Tilt Kit:
Aliexpress 5-7$, Robotshop.com 9.95$, lynxmotion.com 9.95$
Датчик MLX90614
MLX90614 — инфракрасный термометр в корпусе TO-39. Даташит PDF.
Данные с датчика могут быть считаны при помощи шины SMBus или ШИМ. В нашем случае используется датчик с индексом DCI или BCI. Питание 3В. Индекс I обозначает тип форм-фактора, I — с насадкой для обеспечения узкого поля зрения в 5° (см. рисунок выше).
Сборка тепловизора
1. Для начала необходимо разместить плату Arduino в корпус с батарейным отсеком
2. При помощи суперклея или эпоксидки закрепите серводвигатель в пустом пространстве впереди Arduino.
3. Разместите второй серводвигатель в поворотное устройство и закрепите всю конструкцию на серводвигателе.
4. Теперь, необходимо подключить MLX90614 к Arduino. Для этого подсоедините Ground к GND, Vin к 3.3V, SDA к pin 4 и SCL к pin 5. Также, установите резистор 4.7 кОм от SDA к 3.3V, а второй от SCL к 3.3V. Смотрите схему ниже.
5. Подключите Laser Card или лазерную указку. Лазер нужен для того, чтобы вы могли видеть, где в настоящий момент сканирует тепловизор.
6. После, необходимо установить вебкамеру и сориентировать ее точно с ИК датчиком и лазером, чтобы они были направлены в одну и ту же точку. На этом сборка тепловизора закончена.
Программное обеспечение Arduino
Скачать скетч для конфигурирования датчика. После заливки данного скетча в Arduino, откройте Serial Monitor и нажмите клавишу. Программа изменит настройки EEPROM датчика. Это требуется сделать только один раз. После того, как увидите надпись «Finish» отсоедините Arduino от ПК и присоедините его снова.
Скачать главный рабочий скетч Arduino.
Дополнительно, понадобится библиотека I2CMaster.
Программное обеспечение для компьютера
ПО для компьютера написано на JAVA, поэтому вам понадобится Java Runtime Environement. ПО работает под Windows, Linux или Mac OSX в 32-bit & 64-bit. Однако, если запускается под Windows 64 бит, то лучше установить 32-битную версию JAVA. Скачать.
Источник
Тепловизор на FLIR Lepton своими руками
Наконец-то мы дожили до тех времен, когда тепловизионная техника, во-первых, стала доступна не только военным и шпионам, а во-вторых, миниатюризировалась до размеров карманного устройства. И более того, появились модули для сборки собственных DIY-тепловизоров. Но об этом позже.
Немного теории
Любые нагретые тела излучают ЭМИ. Закон смещения Вина, который говорит о том, на какую длину волны будет приходиться пик излучения нагретого абсолютного черного тела:
При комнатной температуре пик находится в ИК-диапазоне невидимом нашему глазу. Если мы, например, будем ковать железо, то при нагревании оно станет красным, потом белым… При охлаждении длина волны излучения будет увеличиваться, смещаясь назад в ИК-диапазон. Таким образом, из наблюдаемой длины волны теплового излучения мы можем получить температуру тела.
Но как быть с объектами, имеющими достаточно низкую температуру, например, комнатную? Они-то уж точно не светятся в видимом диапазоне. Здесь на помощь приходят специальные устройства — тепловизоры. Они умеют регистрировать волны среднего и длинного инфракрасного диапазона. Такие приборы применяются, например, для мониторинга техники, когда нужно выяснить, какой элемент или узел нагревается свыше допустимого уровня. Также тепловизоры применяют для проверки утепления домов, определяя места и интенсивность утечки тепла.
Пример термографий (источник: интернет)
Например, когда я сделал свой тепловизор, то обследовал с его помощью пластиковые окна и сразу нашел место, откуда дует, т. к. там плохой уплотнитель.
Не так давно инфракрасная камера FLIR оказалась в центре спортивного скандала: она показала, что рама велосипеда одной из участниц велогонки подозрительно нагрета. Оказалось, что внутри был спрятан мотор, помогавший спортсменке крутить педали. Так что в этом году для выявления подобных случаев на Тур де Франс используются тепловизоры.
Что такое FLIR Lepton?
В 2014 году компания FLIR, мировой лидер в разработке тепловизионной техники, выпустила миниатюрный датчик, LWIR-сенсор, который умеет регистрировать инфракрасные волны в диапазоне 8–14 мкм. Именно на этот диапазон приходится максимум излучения тел с температурой от –50 до +50 градусов Цельсия. (Но это не означает, что более горячие тела, например, чайник, не будут видны в этом тепловизоре).
Датчик миниатюрный, обеспечивает тепловое разрешение 80 х 60 пикселей с частотой обновления в 9 Гц. Интерфейс получения данных — Video over SPI, а управления — I2C. Оба интерфейса поддерживаются Raspberry Pi, поэтому у DIY-энтузиастов сразу возникла мысль, что можно сделать из Lepton тепловизор.
В 2014 году FLIR еще не работала с DIY-сообществом, поэтому мы собрались на groupgets.com и заказали оптом партию в 100 штук. Случилось это перед обвалом рубля, так что мне датчик достался довольно дешево. К сожалению, цены на такую технику довольно высоки. Сам датчик стоил 250 долларов, на тот момент это меньше 10 000 руб. Сейчас тепловизор такого же разрешения стоит в магазине
40 000 руб. Кроме того, Lepton стоит в модуле Flir One для смартфонов (
Тепловой след от руки на столе
Lepton способен уловить излучение и далеких объектов с улицы
Собираем тепловизор
Ребята из компании Pure Engineering сделали для FLIR Lepton breakout board, которая подключается в т. ч. и к Raspberry Pi, который работает с ней по I2C и SPI.
Изображение выводится на маленький LCD-монитор для автомобиля через RCA-разъем.
Также я добавил к своему устройству обычную камеру для Raspberry Pi со спиленным инфракрасным фильтром (NoIR), чтобы она видела в темноте.
Тепловизионная техника работает в ИК-диапазоне, поэтому ей нужна особая оптика. Например, для нашего устройства желательно купить защитное стекло, но обычное не подойдет, потому что оно непрозрачно для ИК-лучей. Нужно покупать специальную оптику на основе селенида цинка (ZnSe), германия (Ge) или арсенида галлия (GaAs). Кроме того, продаются и фокусирующие линзы.
Корпусирование и батарейное питание
Всех, кому приходилось делать портативные устройства, мучил вопрос изготовления корпуса. Альфа-версия у меня была в картонной коробке. Очень удобно: можно прорезать дырки, где хочешь. Внутри была очень большая батарея. Если такой аппарат уронить на ногу, будет очень больно.
Финальный вариант задумывался в портативной компоновке типа «пистолет». Так как в продаже подобных корпусов нет, я попросил друга сделать модель удобной ручки, а коллега ее распечатал на 3D-принтере. В ручку я поместил батарею, а для электроники был взят готовый пластиковый прямоугольный корпус.
Аккумулятор должен был обеспечивать продолжительную работу, в т. ч. и зимой на улице. И хотелось, чтобы его было удобно заряжать — по этому критерию лучше всего литий-полимерные аккумуляторы, к ним продается множество готовых модулей зарядки от USB. Но для тех Li-Po, что я видел в продаже, указан рабочий диапазон температур от 0 °C, т. е. они не выдерживают сильный мороз.
Кроме Li-Po существуют Pb, NiMh, NiCd и LiFePO4 аккумуляторы. Пальчиковые аккумуляторы я брать не хотел, т. к. это бы усложнило конструкцию ручки — пришлось бы делать отсек со съемными батареями и крышечкой. Из оставшихся вариантов я выбрал небольшую свинцовую батарею на 6 В. К ней пришлось добавить понижающие конвертеры до 5 В, чтобы питать Raspberry, и повышающие конвертеры до 12 В для питания экрана.
Режимы съемки
Типовые режимы картинки для тепловизоров:
- обычные оттенки серого: чем светлее, тем горячее;
- красно-синяя палитра, где красный — горячо, синий — холодно;
Автор с кружкой горячего чая и холодной банкой колы
Кроме того, одновременно с отображением на экран, мы можем сохранять скриншоты и видео.
Чайник закипает на газовой плите
Библиотеки
Комьюнити уже написало библиотеки под различные платформы, в том числе STM32, Raspberry Pi, Arduino. Я начал писать код на С, но это довольно тяжелое занятие, поэтому сейчас я перехожу на библиотеку Python, которая использует OpenCV. Там все гораздо проще, и уже есть готовые примеры с тем же overlay. Так что я рекомендую именно Python.
Итак, наш тепловизор умеет снимать и сохранять изображения на диск. Чтобы их скачать, я поставил hostapd, isc-dhcp-server и PureFTPd, превратив этот прибор еще и в точку доступа Wi-Fi, чтобы к нему можно было подключиться и скачать картинки.
Измерение температуры
На скриншотах с моего тепловизора нет шкалы температур. Почему? Дело в том, что в первой версии Lepton есть сложность с режимом измерения (т. н. radiometry) — нужно калибровать датчик относительно известной температуры, что штатно делается замером температуры специальной шторки перед Lepton. Но в моей (первой) версии модуля нет такой шторки. (Кстати, если вы задумаете покупать Lepton, то сейчас его логично брать сразу со шторкой).
Кроме того, в нашей технической бочке меда есть физическая ложка дегтя. Закон Стефана Больцмана гласит, что для абсолютно черного тела испускательная способность пропорциональна четвертой степени его температуры. Однако обычные предметы не являются абсолютно черными телами, и для них вводится коэффициент ε от 0 до 1.
Q = εσT 4 , где ε — emissivity, коэффициент излучения или степень черноты
Иными словами разные материалы одинаковой температуры могут излучать с разной интенсивностью. Например, при одинаковой температуре дерево будет излучать мощнее, чем сталь — за счет большего коэффициента emissivity. И на экране нашего тепловизора дерево будет как будто «теплее». Отчасти это можно компенсировать, указав прибору коэффициент emissivity, если он известен. Но для каждого объекта в кадре это сделать проблематично.
Пример из Википедии. Окрашенная сторона (ε≈0.45) алюминиевого куба выглядит теплее полированной (ε≈0.05) на термальном снимке
То же самое касается ИК-термометров (пирометров). Когда вы что-то меряете ими, то для точной оценки температуры нужно выставить поправочный коэффициент.
Кроме того, точному измерению мешает зависимость интенсивности излучения от угла, отражающая способность материала и так далее. Так что такой тепловизор, к сожалению, не показывает точную температуру. Есть модели с отображением температуры, но и они требуют ввода коэффициента emissivity.
Дальнейшее развитие
Проект с тепловизором еще далек от завершения. Как всегда, есть масса идей:
- вынести на потенциометры подстройки. В Raspberry Pi нет аналоговых входов, поэтому надо ставить дополнительно АЦП. Также с его помощью хочу контролировать разряд батареи;
- добавить лазерный указатель;
- сделать ИК-подсветку для обычной камеры;
- так как я теперь использую OpenCV, можно использовать что-то из него, например, добавить отслеживание контуров объектов на экране.
Источник