- Двухтональный автомобильный сигнал своими руками
- Первый вариант задержки
- Второй вариант задержки
- Третий вариант задержки
- Четвертый вариант задержки
- Схема поочередно переключающихся сигналов
- Простые имитаторы звуков, световые эффекты, игрушки (11 схем)
- Генератор трелей соловья
- Электронный подражатель пения канарейки
- Имитатор кряканья утки
- Генератор «шума дождя»
- Электронный барабан-приставка
- Электронная скрипка с сенсорным управлением
- Электромузыкальный инструмент
- Простая цветомузыка на светодиодах
- Электронная игрушка «угадай цвет» на светодиодах
- Электронная игрушка «у кого лучше реакция»
- Самодельный фототир
Двухтональный автомобильный сигнал своими руками
В автомобилях часто устанавливают два клаксона, тем самым звук получается двухголосным — оба звучат одновременно. Один сигнал высокого тона с частотой звуковых колебаний около 430 Гц, другой низкого тона с частотой около 320 Гц.
Но при поочередном звучании клаксонов резко контрастирует автомобильный сигнал на фоне ему подобных. Ранее мы рассматривали похожую схему: «Электронный переключатель сигнала и светодиодных ламп.»
Есть ещё другой вариант…
… достаточно лишь на короткое время задерживать включение сигнала низкого тона относительно сигнала высокого, и различимость звучания в целом заметно улучшится. Для реализации задержки включения нужно ввести в цепь сигнала низкого тона автомобиля реле времени. После окончания времени выдержки реле (оно не должно превышать секунды) оба клаксона, как и обычно, звучат одновременно.
Разница в работе клаксонов незначительна, но зато различимость их звучания (или, как говорят специалисты, полетность, т.е. легкость слухового обнаружения звучания даже при значительном уровне шума) существенно выше. Следует заметить, что в первое время после переделки «голос» машины кажется чужим и даже неприятным, но очень скоро становится привычным и легко различимым среди подобных. Это важно, в первую очередь, в тех случаях, когда машина, оснащенная автосторожем, стоит на неохраняемой стоянке, где одновременно находится много автомобилей. Необходимо быстро и уверенно определить, не ваша ли машина подает сигнал тревоги. Такой необычный звук к тому же лучше воспринимают пешеходы и другие участники движения.
Есть разные варианты исполнения реле времени:
Первый вариант задержки
На рис. 1 показана схема одного из возможных его вариантов. Реле собрано на транзисторе VT1. Требуемую временную задержку обеспечивает цепь R1C1. Здесь НА1 — клаксон высокого тона, а НА2 — низкого; оба входят в состав системы электрооборудования автомобиля. Клаксон НА1 включает контактная группа К2.1 реле сигналов автомобиля (обмотка этого реле на рис. 1 не показана), а НА2 — контактная группа К1.1 дополнительного реле К1.
Диоды VD1, VD2, VD3 служат для подавления импульсов напряжения самоиндукции, возникающих на обмотках реле К1 и клаксонов НА1, НА2.
Когда устройство обесточено (контакты К2.1 разомкнуты), клаксоны выключены, конденсатор С1 разряжен. После срабатывания реле сигналов и замыкания контактов К2.1 немедленно включается клаксон НА1 высокого тона. Одновременно начинается зарядка конденсатора С1 через резистор R1. Когда он зарядится настолько, что откроется транзистор VT1 и сработает реле К1, контакты К1.1 включат клаксон НА2 низкого тона.
Задержка его включения зависит от параметров цепи R1C1. При указанных на схеме типономиналах деталей она близка к 1 с. Далее оба клаксона НА1, НА2 звучат одновременно.
После размыкания контактов К2.1 оба клаксона выключатся и конденсатор С1 очень быстро разрядится через резистор R2 и эмиттерный переход транзистора VT1 — устройство снова готово к работе.
Если нажатие на кнопку подачи звукового сигнала (на руле автомобиля) будет кратковременным (менее 1 с), сработает лишь клаксон НА1, а НА2 включиться не успеет. Ясно, что такой режим ручной подачи сигнала способствует уменьшению общего городского шума.
Описанное реле времени легко смонтировать на современном автомобиле с двумя клаксонами, у которого, как правило, они включаются контактами специального реле сигналов. Клаксон такой машины имеет всего один — плюсовой — зажим, минусовым выводом служит корпус клаксона.
На автомобилях старых моделей, например, ВАЗ-2101, для управления клаксонами не использовали промежуточного реле, а сами они были подключены на автомобиле по распространенной прежде двупроводной схеме. При этом каждый клаксон обычно имел два зажима, один из которых был постоянно соединен с плюсовым проводом бортовой сети.
Для таких машин более подходит схема, представленная на рис. 2.
Второй вариант задержки
По принципу работы это реле ничем не отличается от предыдущего. Укажем лишь, что здесь SB1-контакты рулевой кнопки звукового сигнала.
В журнале «За рулем», 1993, N» 7, с. 38, 39 в статье «Голос узнаете сразу» были описаны устройства, позволяющие имитировать звук старинного клаксона с резиновой грушей (когда на грушу нажимали, раздавался звук сравнительно высокого тона, а когда отпускали -низкого).
Они собраны на электромагнитных и тепловых реле, поэтому довольно сложны, а надежность работы невысока.
Ниже описаны два электронных аналога этих устройств. Несмотря на то, что в их составе также присутствует одно электромагнитное реле, они проще в реализации и работают лучше. При нажатии на сигнальную кнопку будет звучать клаксон высокого тона, а после ее отпускания кратковременно прозвучит клаксон низкого тона.
Схема такого устройства применительно к современному автомобилю показана на рис. 3.
Третий вариант задержки
Здесь диоды VD1, VD4, VD5 служат для подавления высоковольтных импульсов самоиндукции на обмотках реле К1 и клаксонов НА1, НА2.
При замыкании контактов К2.1 реле сигналов звучит клаксон НА1 и заряжается конденсатор С1 через резистор R2 и диод VD2. Транзистор VT1 в это время закрыт, так как закрыт диод VD3. Реле К1 обесточено, клаксон НА2 выключен.
После размыкания контактов К2.1 выключается клаксон НА1, открывается диод VD3 и конденсатор С1 разряжается через резистор R1, эмиттерный переход транзистора VT1, диод VD3 и обмотку клаксона НА1. При этом транзистор открывается, срабатывает реле К1 и контактами К1.1 включает клаксон НА2. После разрядки конденсатора (примерно через секунду) транзистор закрывается, реле К1 отпускает якорь, выключая клаксон НА2. Устройство снова готово к работе.
Четвертый вариант задержки
Если на автомобиле нет реле сигналов и клаксоны включаются непосредственно контактами сигнальной кнопки на руле, то устройство следует собирать по схеме на рис. 4.
В нем диоды VD1, VD4, VD5 — защитные, а VD2 и VD3, как и в предыдущем устройстве, коммутируют цепи зарядки и разрядки конденсатора С1. По порядку работы устройство тоже практически не отличается от предыдущего.
В заключение несколько замечаний, общих для всех описанных в этой статье устройств. Реле времени везде настроено на выдержку приблизительно 1 с. Если необходимо это время продлить, нужно пропорционально увеличить сопротивление резистора R1, и наоборот.
Транзистор КТ829А можно заменить любым из этой серии; годятся также транзисторы КТ972А и КТ972Б. Если же приобрести указанные составные транзисторы не удалось, можно использовать составленные, например, из транзисторов серий КТ801 или КТ807 и КТ815 или КТ817 (желательно выбирать наиболее высоковольтные по напряжению коллектор-эмиттер).
Во всех устройствах лучше всего использовать малогабаритные реле 111.3747, 112.3747, 113.3747, 113.3747-10, 114.3747-10, 114.3747-11, 116.3747-10,116.3747-11,117.3747-10 или 117.3747-11, рассчитанные на номинальное напряжение 12 В (см. статью В. Банникова «Малогабаритные автомобильные электромагнитные реле в «Радио», 1994, №9, с. 42 и №10, с. 41).
Диоды КД102А можно заменить на КД102Б, КД510А или любые из серий КД103, КД109, КД226. Вместо КД213А подойдут КД213Б или КД202 с буквенными индексами В, Д, Ж, К, М, Р. С диодами из серии КД202 габариты устройства придется несколько увеличить. Если пойти на еще большее увеличение размеров, то вместо КД213А можно использовать диоды серий КД204, Д242, Д305. В силу кратковременности работы устройств каких-либо теплоотводов для диодов или транзисторов не требуется.
При любом отказе устройства для возврата к стандартному варианту питания клаксонов достаточно замкнуть перемычкой контактную группу К1.1.
Схема поочередно переключающихся сигналов
О чем мы ранее рассказывали в этой схеме поочередно включаются то один сигнал, то другой.
Соотношение тонов сигналов обычно устанавливают близким к малой терции, которая, являясь основой минорного аккорда (трезвучия), вызывает у человека ощущение тревоги. Поэтому данный схемы можно также использовать для охраны своего участка, дома, дачи и т.д.
Источник
Простые имитаторы звуков, световые эффекты, игрушки (11 схем)
Схемы простейших электронных устройств для начинающих радиолюбителей. Простые электронные игрушки и устройства которые могут быть полезны для дома. Схемы построены на основе транзисторов и не содержат деффицитных компонентов. Имитаторы голосов птиц, музыкальные инструменты, светомузыка на светодиодах и другие.
Генератор трелей соловья
Генератор трелей соловья, выполненный на асимметричном мультивибраторе, собран по схеме, приведенной на рис. 1. Низкочастотный колебательный контур, образованный телефонным капсюлем и конденсатором СЗ, периодически возбуждается импульсами, вырабатываемыми мультивибратором. В итоге формируются звуковые сигналы, напоминающие соловьиные трели. В отличие от предыдущей схемы звучание этого имитатора не управляемое и, следовательно, более однообраз ное. Тембр звучания можно подбирать, меняя емкость конденса тора СЗ.
Рис. 1. Генератор-иммитатор трелей соловья, схема устройства.
Электронный подражатель пения канарейки
Рис. 2. Схема электронного подражателя пения канарейки.
Электронный подражатель пения канарейки описан в книге Б.С. Иванова (рис. 2). В его основе также асимметричный мультивибратор. Основное отличие от предыдущей схемы — это RC-цепочка, включенная между базами транзисторов мультивибратора. Однако это несложное нововведение позволяет радикально изменить характер генерируемых звуков.
Имитатор кряканья утки
Имитатор кряканья утки (рис. 3), предложенный Е. Бри-гиневичем, как и другие схемы имитаторов, реализован на асимметричном мультивибраторе [Р 6/88-36]. В одно плечо мультивибратора включен телефонный капсюль BF1, а в другое — последовательно соединенные светодиоды HL1 и HL2.
Обе нагрузки работают поочередно: то издается звук, то вспыхивают светодиоды — глаза «утки». Тональность звука подбирается резистором R1. Выключатель устройства желательно выполнить на основе магнитоуправляемого контакта, можно самодельного.
Тогда игрушка будет включаться при поднесении к ней замаскированного магнита.
Рис. 3. Схема имитатора кряканья утки.
Генератор «шума дождя»
Рис. 4. Принципиальная схема генератора «шума дождя» на транзисторах.
Генератор «шума дождя», описанный в монографии В.В. Мацкевича (рис. 4), вырабатывает звуковые импульсы, поочередно воспроизводимые в каждом из телефонных капсюлей. Эти щелчки отдаленно напоминают падение капель дождя на подоконник.
Для того чтобы придать случайность характеру падения капель, схему (рис. 4) можно усовершенствовать, введя, например, последовательно с одним из резисторов канал полевого транзистора. Затвор полевого транзистора будет представлять собой антенну, а сам транзистор будет являться управляемым переменным резистором, сопротивление которого будет зависеть от напряженности электрического поля вблизи антенны.
Электронный барабан-приставка
Электронный барабан — схема, генерирующая звуковой сигнал соответствующего звучания при прикосновении к сенсорному контакту (рис. 5) [МК 4/82-7]. Рабочая частота генерации находится в пределах 50. 400 Гц и определяется параметрами RC-элементов устройства. Подобные генераторы могут быть использованы для создания простейшего электромузыкального инструмента с сенсорным управлением.
Рис. 5. Принципиальная схема электронного барабана.
Электронная скрипка с сенсорным управлением
Рис. 6. Схема электронной скрипки на транзисторах.
Электронная «скрипка» сенсорного типа представлена схемой, приведенной в книге Б.С. Иванова (рис. 6). Если к сенсорным контактам «скрипки» приложить палец, включается генератор импульсов, выполненный на транзисторах VT1 и VT2. В телефонном капсюле раздастся звук, высота которого определяется величиной электрического сопротивления участка пальца, приложенного к сенсорным пластинкам.
Если сильнее прижать палец, его сопротивление понизится, соответственно возрастет высота звукового тона. Сопротивление пальца зависит также от его влажности. Изменяя степень прижатия пальца к контактам, можно исполнять незамысловатую мелодию. Начальную частоту генератора устанавливают потенциометром R2.
Электромузыкальный инструмент
Рис. 7. Схема простого самодельного электромузыкального инструмента.
Электромузыкальный инструмент на основе мультивибратора [В.В. Мацкевич] вырабатывает электрические импульсы прямоугольной формы, частота которых зависит от величины сопротивления Ra — Rn (рис. 7). При помощи подобного генератора можно синтезировать звуковую гамму в пределах одной-двух октав.
Звучание сигналов прямоугольной формы очень напоминает органную музыку. На основе этого устройства может быть создана музыкальная шкатулка или шарманка. Для этого на диск, вращаемый ручкой или электродвигателем, наносят по окружности контакты различной длины.
К этим контактам напаивают предварительно подобранные резисторы Ra — Rn, которые определяют частоту импульсов. Длина контактной полоски задает длительность звучания той или иной ноты при скольжении общего подвижного контакта.
Простая цветомузыка на светодиодах
Устройство цветомузыкального сопровождения с разноцветными светодиодами, так называемая «мигалка», украсит музыкальное звучание дополнительным эффектом (рис. 8).
Входной сигнал звуковой частоты простейшими частотными фильтрами разделяется на три канала, условно называемые низкочастотным (светодиод красного свечения); среднечастотным (светодиод зеленого. свечения) и высокочастотным (желтый светодиод).
Высокочастотная составляющая выделяется цепочкой С1 и R2. «Среднечастотная» компонента сигнала выделяется LC-фильтром последовательного типа (L1, С2). В качестве катушки индуктивности фильтра можно использовать старую универсальную головку от магнитофона, либо обмотку малогабаритного трансформатора или дросселя.
В любом случае при настройке устройства потребуется индивидуальный подбор емкости конденсаторов С1 — СЗ. Низкочастотная составляющая звукового сигнала беспрепятственно проходит через цепь R4, СЗ на базу транзистора VT3, управляющего свечением «красного» светодиода. Токи «высокой» частоты закорачиваются конденсатором СЗ, т.к. он имеет для них крайне малое сопротивление.
Рис. 8. Простая цветомузыкальная установка на транзисторах и светодиодах.
Электронная игрушка «угадай цвет» на светодиодах
Электронный автомат предназначен для отгадывания цвета включившегося светодиода (рис. 9) [Б.С. Иванов]. Устройство содержит генератор импульсов — мультивибратор на транзисторах VT1 и VT2, связанный с триггером на транзисторах VT3, VT4. Триггер, или устройство с двумя устойчивыми состояниями, поочередно переключается после каждого из пришедших на его вход импульсов.
Соответственно, поочередно высвечиваются и разноцветные светодиоды, включенные в каждое из плеч триггера в качестве нагрузки. Поскольку частота генерации достаточно высока, мигание светодиодов при включении генератора импульсов (нажатии на кнопку SB1) сливается в непрерывное свечение. Если отпустить кнопку SB1, генерация прекращается. Триггер устанавливается в одно из двух возможных устойчивых состояний.
Поскольку частота переключений триггера была достаточно велика, заранее предсказать, в каком состоянии окажется триггер, невозможно. Хотя из каждого правила есть исключения. Играющим предлагается определить (предсказать), какой именно цвет появится после очередного запуска генератора.
Либо предлагается угадать, какой цвет загорится после отпускания кнопки. При большом наборе статистики вероятность равновесного, равновероятного высвечивания светодиодов должна приблизиться к значению 50:50. Для малого числа попыток это соотношение может не выполняться.
Рис. 9. Принципиальная схема электронной игрушки на светодиодах.
Электронная игрушка «у кого лучше реакция»
Электронное устройство, позволяющее сопоставить скорость реакции двух испытуемых [Б.С. Иванов], может быть собрано по схеме, приведенной на рис. 10. Первым высвечивается индикатор — светодиод того, кто первый нажмет «свою» кнопку.
В основе устройства триггер на транзисторах VT1 и VT2. Для повторного тестирования скорости реакции питание устройства следует кратковременно отключить дополнительной кнопкой.
Рис. 10. Принципиальная схема игрушки «у кого лучше реакция».
Самодельный фототир
Рис. 11. Принципиальная схема фототира.
Светотир С. Гордеева (рис. 11) позволяет не только играть, но и тренироваться [Р 6/83-36]. Фотоэлемент (фотосопротивление, фотодиод — R3) направляют на светящуюся точку или солнечный зайчик и нажимают спусковой крючок (SA1). Конденсатор С1 разряжается через фотоэлемент на вход генератора импульсов, работающего в ждущем режиме. В телефонном капсюле раздается звук.
Если наводка неточна, и сопротивление резистора R3 велико, то энергии разряда недостаточно для запуска генератора. Для фокусировки света необходима линза.
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.
Источник