Сирена с громкоговорителем своими руками

ЭЛЕКТРОННАЯ СИРЕНА


Схема электронной сирены на транзисторах

Схема этой прерывистой сирены очень простая, я нашел её несколько лет назад в интернете, тогда же была спаяна плата и опробована на практике. В основе её лежит генератор на транзисторах VT1 и VT2, собранный по схеме несимметричного мультивибратора. Как она работает: при нажатии на кнопку SB1 раздается звук сирены с все повышающейся тональностью, после отпускания кнопки тональность понижается и сирена замолкает. Тональность звучания можно изменить подбором конденсатора С2, либо взять несколько конденсаторов соединив их последовательно, параллельно или в смешанное соединение. Динамик взял мощностью 0.1 Вт, он стоял раньше в какой-то китайской игрушке. Взять динамик больших размеров не позволял корпус. Плату тогда травить не стал, а изготовил её путем прорезания канавок.

При проверке сирены экспериментировал с разными динамиками, мощностью от 0.1 до 5 Вт, сопротивлением 4-8 Ом, со всеми работало нормально. Напряжение питания подавал 9-11 вольт, можно запитать от «кроны” либо если удастся найти в продаже 2 последовательно соединенных батарей 3R12 (советское название 3336) на 4.5 вольт, последних хватит на дольше.

Также можно запитать от китайского блока питания выдающего 9-12 вольт. Если кто-либо не захочет вручную, кнопкой, задавать тональность звучания, думаю можно подключить заместо кнопки симметричный мультивибратор, тогда в то время, когда транзистор мультивибратора будет открыт, сирена будет звучать, когда транзистор закрыт, соответственно молчать. Вот фото готового устройства:

Конденсаторы поставил пленочные, просто потому, что они у меня были, но и керамические конденсаторы, я думаю, работали бы здесь не хуже. Транзисторы также можно взять любые соответствующей структуры. В ждущем режиме, при замкнутом выключателе SA1, устройство потребляет незначительный ток, что позволяет при желании использовать его в качестве квартирного звонка. При нажатой кнопке SB1 потребляемый ток возрастает до 40 мА. Привожу рисунок печатной платы этой сирены:

Выкладываю файл этой платы для программы sprint layout, позднее разведенный мной. Более сложное устройство, с применением микроконтроллера, описано здесь. С вами был AKV.

Источник

Очень громкая сирена на транзисторах

Недавно понадобилось собрать довольно громкую сирену, при этом закупать компоненты не хотел, поскольку собирался дарить саму сирену в подарок. К счастью ничего собирать не пришлось, поскольку в старом хламе нашел несколько плат, которые в свое время снял из старых автомобильных сирен.

Сами платы, как уже сказал, довольно старые, поэтому реализована схема на транзисторах, никаких микросхем, и МК, с радостью предоставляю схему такой сирены для самостоятельного повторения.
Не смотря на простоту, сирена орет довольно громко, очень громко, это означает, что схема вполне подходит для охранной сигнализации автомобиля, а рабочее напряжение как раз позволяет подключить схему напрямую к бортовой сети автомобиля.

При желании компоненты можно заменить отечественными, они тоже работают отменно, да и вообще, сама схема не очень чувствительна к элементной базе, чудесно работает и с довольно большим разбросом используемых радиокомпонентов.

Транзисторы в схеме не перегреваются даже при долговременной работе. В схеме реализован двойной генератор – один для генерации тона, второй для изменения последнего.

Первый генератор при желании можно заменить на старый и уже забытый двухбазовый транзистор – КТ117, по идее, первый генератор полный аналог указанного транзистора.

Не дефицитные компоненты и простота сборки – основные достоинства данной схемы. Генератор можно подключить к любой ВЧ головке, например от старой охранной сигнализации или крякалки.

При желании мощность схемы можно поднять заменой конечного транзистора КТ817 на более мощный КТ819, но желательно установить транзистор на теплоотвод. Схему можно подключить к головкам, с сопротивлением катушки 4-16 Ом, при этом, чем меньше сопротивление катушки, тем сильнее вы нагрузите схему и транзистор (кт817) может перегреваться, взамен мощность будет большой, следовательно – при высокоомных головках (8-16Ом) мощность схемы будет поменьше.

Источник

Собрал имитатор сирены на двух транзисторах. Показываю, как громко он работает

Доброго времени суток! Решил собрать очередную схему, основанную на несимметричном мультивибраторе. Как он орёт — словами не передать! В этот раз я буду собирать сирену, а вот что я собирал до этого:

Данный имитатор сирены можно будет приспособить в качестве сигнализации, дверного звонка, встроить в детскую игрушку (правда для этого нужно будет уменьшить емкость конденсатора) и так далее.

Радиодетали для сборки сирены

Для сборки имитатора сирены своими руками нам понадобятся следующие детали:

  1. Конденсатор достаточно большой ёмкости. Я использовал два по 15 000мкф
  2. Конденсатор малой емкости, я использовал опять же два по 100 нф
  3. Транзисторы МП36А и МП40 или аналогичные
  4. Резистор на 680 ОМ
  5. 2 резистора на 2200 Ом
  6. Переменный или подстроечный резистор на 2200 Ом для изменения длительности нарастания и затухания (опционально, можно и без него обойтись)
  7. 1 резистор на 15 кОм
  8. Динамик на 8 Ом
  9. Крона или иной источник питания 5 — 9 В (рекомендую прикупить колодку для неё, так как стоит она всего 12 рублей, но сильно облегчает демонтаж старых и монтаж новых устройств)

Вот, в принципе, и всё. Большинство радиодеталей можно без труда найти у себя в загашнике, или в ближайшем магазине. Если не найдете конкретно такие транзисторы, то используйте МП35-МП38 и МП39-МП42 соответственно. С ёмкостью конденсаторов можно смело экспериментировать, я установил конденсаторы суммарной ёмкостью 30 000 мкФ, но вы можете поставить один на 15 000 или на 10 000 — какой найдете. Если не найдете подстроечный резистор, смело ставьте любой попавшийся в диапазоне 500 — 2500 Ом.

Принципиальная схема имитатора сирены

Набросал принципиальную схему в sPlan, по которой я собирал сирену, соответственно номиналы элементов указал те, которые были у меня. Как я уже писал выше, у вас могут быть другие компоненты.

Источник

Схема сирены и подключение

Генераторы в схеме отмечены желтой рамкой. Первый Г1 задаёт частоту изменения тона, а второй Г2 собственно сам тон, который плавно меняется на транзисторе VT1 включенного последовательно ссопротивлением R2. Для выбора требуемого звучания можно вместо сопротивлений R1, R2 использовать подстроечные резисторы тех же значений.

При включение напряжения питания, звукоизлучатель начинает генерировать тональный акустический сигнал, высота тона меняется с высокого на низкий и обратно. Сигнал звучит непрерывно, изменяется только тон звука, который переключаются с частотой 3-4 Гц.

В схеме сирены применены два мультивибратора на элементах D1.1 и D1.2 микросхемы К561ЛН2, управляющий тоном, и мультивибратор на элементах D1.3 и D1.4 этой же микросхемы, генерирующий тональные сигналы. Частота импульсов, генерируемая первым мультивибратором на элементах D1.3 и D1.4 зависит от элементов C2, R2 и C3, R4. Изменять частоту следования импульсов, а значит и тона звукового сигнала можно как сопротивлениями, так и емкостями.

Предположим, в начальный момент на выходе мультивибратора на элементах D1.1 и D1.2 имеется уровень логической единицы. Так как на катоды диодов VD1 и VD2 поступает плюс, то диоды будут запертыми. Сопротивления R4 и R5, , в работе схемы не участвуют и частота на выходе мультивибратора минимальна, звучит низкотональный сигнал.

Как только на выходе этих элементов установится логический ноль диоды VD1 и VD2 откроются и подсоединят сопротивления R4 и R5. В результатечастота навыходе мультивибратора возрастет.

Далее импульсы поступают через два инвертора D1.5 и D1.6 на транзисторы VT1-VT4 которые усиливают сигнал поступающий на высокочастотную динамическую головку.

Используемые в схеме транзисторы КТ815 можно заменить на КТ817, а КТ814на КТ816. Диоды — КД521, КД522, КД503, КД102.

Следующее устройство может быть использовано в качестве аварийного сигнализатора или звукового сигнала для горного велосипеда . Оно представляет собой двухтональную сирену и состоит из тактового генератора на элементах DD1.1—DD1.3, двух тональных генераторов (первого на элементах DD2.1, DD2.2 и второго на элементах DD2.3, DD2.4), согласующего каскада с усилителем мощности на элементе DD1.4 и транзисторе VT1.

Напряжение питания этой схемы от 9 до 12 вольт, катушки динамика должно быть сопротивлением не менее 16 Ом или можно использовать 2 динамика 3ГДШ-2-8 по 8 Ом соединенные последовательно.

В качестве транзисторов подойдет почти любой маломощный соответствующей проводимости, например КТ3102Е

Схема состоит из двух генераторов. Первый используется для генерации тона, второй для изменения и модулирования.

Для максимального уровня громкости, необходимо, чтобы на пьезоэлемент поступала частота эквивалентная его резонансной частоте по мостовой схеме.

Основа конструкции мощный мультивибратор 4047, работающий в нестабильном режиме. Все это управляется мощным полевым MOSFET-транзистором VТ1, которым управляет таймер NE555, посредством генерации соответствующих прямоугольных импульсов низкой частоты, в результате чего осуществляется имитация звука пожарной сирены. Переключение режимов работы непрерывно или прерывисто устанавливается с помощью тумблера.

Выводы 10 и 11 микросборки 4047 выдают противофазные, сигналы с которых управляют мостом на четырех MOSFET. Для получения максимальной громкости, то есть установки резонансной частоту пьезоэлемента, в конструкцию добавлен подстроечное сопротивление R6.

Причем уровень громкости зависит от количества света попадающего на светочувствительный резистор

Эта схема составлена из сочетания музыкального синтезатора на микросхеме УМС-8-08 с мощным выходным каскадом электронной сирены. Для запуска схемы применено реле, обмотка которого имеет гальваническую развязку от остальной части схемы.

Микросхема УМС имеет стандартную схему подключения. Три кнопочных выключателя S1-S3 дают возможность настроить микросхему на исполнение одной из мелодий. При нажатии на первую кнопку начинается воспроизведение мелодии, а нажимая на третью можно перебрать мелодии и выбрать нужную.

Подборка нескольких схем сирен на микроконтроллерах PIC

Данная схема представляет собой простую многотональную сирену на основе микросборки UM3561

В схеме использован динамик на 8 Ом, мощностью 0,5 Вт. С помощью двух переключателей осуществляется выбор и воспроизведения различных тонов звучания тревожного сигнала. Каждая позиция генерирует свой собственный звуковой эффект.

Источник

Звуковая сирена

Представляю вашему вниманию простую схему звуковой сирены без использования микросхем и транзисторов. Звуковая сирена предназначена для оповещения людей и сигнализации.

На рисунке ниже показана электрическая принципиальная схема звуковой сирены. Для создания колебаний тока звуковой частоты в катушке динамика ГД1 сопротивлением 8 ом служит схема релаксационного генератора, собранная на динисторе VS1, конденсаторе C2 и резисторе R1. Релаксационный генератор создаёт несинусоидальный импульсный переменный ток. Резистор R1 в схеме включён последовательно с конденсатором C2, параллельно которому подключены последовательно соединённые динистор VS1 и динамик ГД1.

Данная схема функционирует следующим образом. Конденсатор C2 постепенно заряжается через резистор R1, заряд на нём увеличивается, а, значит, увеличивается и напряжение на его обкладках, так как из курса физики известно, что напряжение на обкладках конденсатора прямо пропорционально заряду конденсатора и обратно пропорционально его ёмкости. Динистор является полупроводниковым прибором с тремя p-n переходами и в обычном состоянии не проводит электрический ток. Он открывается, то есть начинает проводить ток, при определённом напряжении, называемом пробивным. Напряжение на конденсаторе C2 увеличивается до тех пор, пока оно не становится равным пробивному напряжению для динистора VS1. После этого динистор VS1 отпирается, и конденсатор C2 резко разряжается через него и последовательно с ним соединённую обмотку динамика ГД1. По мере разряда напряжение на конденсаторе C2 падает и динистор VS1 запирается. Конденсатор C2 снова начинает заряжаться и цикл генерации колебаний повторяется.

Частота колебаний, создаваемых генератором, или тон звучания сирены, определяется по формуле:
f=1/(RC∙ln(U0/(U0-Uд))),
где R – сопротивление резистора R1, С – ёмкость конденсатора C2, U0 – напряжение питания релаксационного генератора, Uд – пробивное напряжение динистора.

В принципе, для настройки нужного тона звучания сирены можно менять все три ключевых для работы схемы параметра: ёмкость конденсатора C2, значение сопротивления резистора R1 и пробивное напряжение динистораVS1. Но для создания колебаний тока в обмотке динамика с мощностью, достаточной для формирования довольно громкого звука и в то же время безопасной для работоспособности динамика, значения ёмкости конденсатора C2 и пробивного напряжения динистора VS1 выберем определёнными и для настройки частоты колебаний соответственно изменять их не будем. В данном случае оптимальны следующие значения: ёмкость C2 будет 1 мкФ, пробивное напряжение динистора VS1 будет 56 вольт, которое соответствует динистору марки КН102Г. Таким образом, настройка необходимой частоты колебаний в рассматриваемой схеме может осуществляться с помощью подбора значения сопротивления резистора R1. В приведённой схеме используется резистор с сопротивлением 5,6 кОм с рассеиваемой мощностью 10 Вт. Для выбранного сопротивления резистора частота звучания звуковой сирены будет приблизительно равна 896 Гц (при напряжении 310 вольт после выпрямления двухполупериодным выпрямителем питающего сетевого напряжения в 220 вольт). Чем меньше сопротивление данного резистора, тем выше получается тон создаваемого в динамике звука, так как процесс заряда конденсатора C2 при меньшем сопротивлении R1 происходит быстрее и открывание динистора происходит чаще. Соответственно, чем выше сопротивление R1, тем тон звука ниже. Рассеиваемая мощность резистора R1 выбирается тем больше, чем ниже его сопротивление.

Питание схемы релаксационного генератора осуществляется постоянным током, который получается путём выпрямления переменного сетевого напряжения 220 вольт двухполупериодным выпрямителем на диодах VD1-VD4 марки Д226Б. Для сглаживания пульсаций выпрямленного напряжения служит электролитический конденсатор C1 ёмкостью 150 мкФ на 400 вольт. Таким образом, устройство включается напрямую в электрическую сеть напряжением 220 вольт и не требует понижающих силовых трансформаторов.

Минимум деталей, отсутствие сложно устроенных компонентов делает предложенную схему звуковой сирены надёжной, недорогой и простой в сборке и настройке. Кроме того, данное устройство можно использовать как квартирный звонок для слабослышащих людей.

Литература
1. Джонс М. Электроника – практический курс. – М.: Техносфера, 2006. – 512 с.
2. Гальперин М.В. Электроника и электротехника. – М.: Форум, 2009. – 480 с.

Источник

Читайте также:  Трасса выхлопа своими руками
Оцените статью