Сделать регулятор мощности для тэна своими руками

Регулятор мощности для ТЭН не создающий помех

В интернете есть множество примитивных схем симисторных регуляторов мощности. Собранные по этим схемам регуляторы заполонили рынок, включая всем известный Aliexpress. Схемы очень простые и имеют минимум компонентов, не требуют настройки, поэтому заслужили огромную популярность среди потребителей. Но, они все имеют один недостаток, а именно большие помехи, которые излучает регулятор мощности при изменении угла фазы открытия симистора. Помимо помех нагруженное устройство, особенно электродвигатели, нагреваются и создают значительное гудение.

Представленный в этой статье регулятор мощности для ТЭН не создает помех и может регулировать мощность до 3кВт. Незначительное изменение номиналов (читать ниже) даст возможность регулировать обороты синхронного или асинхронного двигателей без значительного их нагрева, как например, при использовании примитивного симисторного регулятора.

Схема регулятора мощности для ТЭН не создающего помех

Принцип регулирования основан на интервальном открытии и закрытии симистора в момент прохождения синусоиды через ноль. Грубо говоря, одну секунду симистор открывается, а потом секунду он закрыт. Эти интервалы вырабатывает генератор, и они настраиваются переменным резистором.

Теперь подробнее. Диодный мост VD1-VD4 выпрямляет напряжение переменного тока

220В. Далее с помощью балластного конденсатора C1 и стабилитрона VD5 напряжение понижается и стабилизируется на уровне +12В. Пульсации сглаживаются емкостью C2. Напряжение +12В будет питать схему управления симистором VS1.

Схема управления симистором состоит из двух основных узлов. Первый — это генератор импульсов, построенный на таймере DA1, а второй узел — это гальваническая развязка на оптопаре U1.

Генератор имеет практически постоянную частоту (около 1Гц) с изменяемой шириной импульса.

При спаде импульса на выходе таймера DA1 (вывод 3), его 7 вывод внутренне (через встроенный транзистор) соединяется с общим проводом (GND) и через светодиод U1, резистор R4 и светодиод HL1 протекает ток около 10мА. Внутренний светодиод U1 засвечивается и оптосимистор U1 открывается, подавая управляющий ток в вывод G симистора VS1. Открытие оптосимистора происходит только при прохождении синуса через ноль, так как MOC3063 имеет такую схему контроля. Это и исключает помехи данного регулятора. Открывшийся симистор VS1 пропускает через себя ток нагрузки ТЭН.

Далее по фронту импульса на 3 выводе таймера DA1 вывод 7 отключается от общего провода и оптопара U1 закрывается, вслед за ней закрывается симистор, отключая ТЭН. И далее все по циклу повторяется, пока таймер генерирует импульсы.

Ширина импульса зависит от скорости заряда и разряда конденсатора C3. Чем дольше происходит заряд и быстрее происходит разряд, тем уже импульс и наоборот. Регулируется это переменным резистором R2. Заряд емкости C3 выполняется с выхода таймера (вывод 3) через цепь R3VD6R2, а разряд происходит через R2 и VD7.

На графике выходное напряжение регулятора мощности будет выглядеть пачками целых, необрезанных периодов (полупериодов).

Параллельно силовым терминалам симистора VS1 подключена помехоподавляющая цепь R7С5, ее можно и не устанавливать.

По интервалам засвечивания HL1 можно судить об уровне ограничения мощности ТЭН.

Компоненты

Резисторы R1 и R7 мощностью 1Вт. Остальные 0.25Вт.

Емкости C1 и С5 пленочные на 400В. Конденсатор C4 керамический на 63В.

Для увеличения частоты генератора (для работы с электродвигателями) можно уменьшить емкость конденсатора C1, например до 1мкФ.

MOC3063 меняется на MOC3043 или MOC3083. Можно пробовать установить MOC3061 или MOC3062 но для их открытия нужен больший ток, а значит нужно уменьшать номинал R4, что может повлечь за собой необходимость увеличения емкости балластного конденсатора C1.

Стабилитрон с малым минимальным током открытия BZX55C10, BZX55C11 или BZX55C12. Подойдет и отечественный стабилитрон Д814В(Г,Д). Не подойдут стабилитроны 1n474*, либо опять же придется увеличивать емкость балластного конденсатора C1.

Симистор VS1 выбирается исходя из тока нагрузки, и берется минимальный запас по току не менее 30%. Для регулятора мощности ТЭН 3кВт я применил симистор BTA20-600B (рассчитанный на 20А). Рекомендую применять серию BTA с изолированным корпусом. Корпус симистора этой серии имеет металлический фланец, но он не соединен с его выводами. Подойдут, например BTA12-600B или BTA16-600B. Работать будет и серия BT, например, по этой схеме на симисторе BT137-600D я собирал регулятор температуры паяльника.

Для более надежной работы рекомендуется использовать светодиод красного цвета в качестве компонента HL1. У красного цвета наименьшее падение напряжения, это важно для этой схемы.

Охлаждение

Площадь теплоотвода будет зависеть от мощности ТЭН. Для 1кВт минимальная площадь приблизительно составит 150см 2 , для 2кВт – 300см 2 , для 3кВт – 450см 2 .

Не забываем про термопасту между симистором и радиатором. Также не забываем установить изоляционную прокладку и втулку, если корпус симистора неизолированный.

При использовании регулятора с ТЭН мощнее 1.5кВт я рекомендую пропаять медную жилу вдоль силовых дорожек печатной платы и демонтировать с нее винтовые клеммы, заменив их пайкой. Это исключит слабые места регулятора.

При эксплуатации на большой мощности (более 1.5кВт) установите автоматический выключатель, так как стеклянные предохранители очень сильно раскаляются, особенно в местах соприкосновения с держателем.

Испытание

При испытаниях регулятора мощности действительно симистор открывался при прохождении синуса через ноль, что очень порадовало отсутствием мерцания рядом включенного светильника, как при использовании примитивных схем. Для убеждения я через понижающий трансформатор взглянул осциллографом на форму выходного напряжения, синусоида была с целыми периодами без отсечения.

Первое включение было с подключенной на выход лампой накаливания, при этом радиатор можно не ставить, если лампа слабее 80Вт.

Далее регулятор был нагружен ТЭН мощностью 1.3кВт, полет нормальный.

Печатная плата регулятора ТЭН не создающего помех СКАЧАТЬ

Источник

Регулятор мощности 1кВт своими руками

Регулятор мощности 1кВт, собранный своими руками, сможет найти широкое применение, как в хозяйстве, так и в мастерской. Он способен регулировать ток нагрузки в сети напряжения переменного тока. Например, регулятор мощности может применяться для регулировки температуры жала паяльника, ТЭН. С помощью него можно управлять температурой плитки для готовки мощностью 1кВт. Помимо этого, регулятор мощности способен регулировать яркость ламп накаливания или устанавливать необходимые обороты коллекторного двигателя (болгарки, дрели, перфоратора).

Схема регулятора мощности 1кВт

Схема типичная, построенная на симисторе и имеет принцип фазового регулирования. Сам принцип работы рассмотрен ниже.

Компоненты схемы

Резистор R1 мощностью 0.25Вт, этого вполне достаточно. Переменный резистор RV1 сопротивлением 500кОм, если применить с меньшим сопротивлением, то регулировка будет происходить не от нуля и в малом диапазоне.

Конденсатор C1 должен быть рассчитан на напряжение 400В. На печатной плате имеется место под пленочный конденсатор.

Светодиод обычный (3В), диаметром 3мм, потребляющий ток 20мА. У меня установлен прямоугольный светодиод, с такими же параметрами.

Симистор (триак) BTA08-600B или другой. Рекомендации по выбору симистора для регулятора мощности описаны ниже.

Светодиод VDS1 и диод VD1 можно не устанавливать, но тогда на печатную плату необходимо установить вместо одного из них перемычку.

Принцип работы

Силовым регулирующим элементом схемы является триак или симистор VS2. Он в отличие от тиристора может пропускать ток нагрузки в обоих направлениях, что очень удобно для работы в цепях переменного тока.

Конденсатор C1 постоянно перезаряжается напряжением переменного тока (

220В). Ток его заряда ограничен резисторами R1 и RV1 и также протекает через диод VD1 и светодиод VDS1 (поочередно). Зарядка конденсатора и свечение светодиода выполняются, только если подключена нагрузка.

Напряжение с конденсатора поступает на динистор VS1, который имеет порог открытия 32В. При преодолении этого порога через динистор начинает протекать ток в управляющий вывод (G) триака VS2, который в свою очередь открывается.

При открытии триака VS2, переменный ток нагрузки будет протекать через выводы A1 и A2 до тех пор, пока ток нагрузки не упадет практически до нуля (ток удержания 50мА), а это произойдет, когда синусоида будет проходить через нуль.

Предположим, что сопротивление реостата RV1 равно 0, тогда C1 будет свободно заряжаться до порога открытия динистора VS1 за минимальное время. В тот момент, пока динистор, а, следовательно, и симистор VS2 закрыты, на выходе регулятора мощности ток нагрузки протекать не будет, а значит, часть (незначительная) синусоиды будет срезана.

Предположим, что сопротивление реостата RV1 равно 250кОм, тогда C1 будет намного дольше заряжаться до порога срабатывания динистора, и симистор будет находиться намного дольше в закрытом положении.

При сопротивлении RV1 равном 500кОм конденсатор практически не сможет зарядиться до напряжения открытия динистора, а, следовательно, почти вся синусоида будет отсечена, симистор практически все время будет закрыт.

Без нагрузки регулятор мощности работать не будет, поэтому не стоит его использовать в качестве регулятора напряжения.

Выбор симистора

Для данной схемы я не рекомендую применять симисторы серии BT с чувствительным затвором, так например, установив BT137-600E, при небольшом нагреве он переставал закрываться. Были танцы с бубном. Хотя данную схему с симисторами серии BTA я повторял уже около десятка раз, собирая регуляторы себе и знакомым, проблем с ними не было. Аналогом серии BTA является серия BTB, которая также рекомендована для данной схемы.

При нагрузке 1кВт через симистор регулятора мощности будет протекать ток примерно равный 4.5А, поэтому симистор должен быть рассчитан на ток с запасом. Я рекомендую применить BTA08-600B (ток 8А) или BTA10-600B (10А). Мощнее ставить нецелесообразно, но можно. Можно установить BTA06-600B (6А), но это снизит надежность регулятора мощности из-за слишком малого запаса по току.

Расположение выводов BTA08-600B.

Серия BTA отличается от серии BTB изолированным корпусом. У обоих металлическое основание, но симистор (BTA) можно установить на теплоотвод без изоляционной прокладки и втулки, в отличие от BTB.

Внимание! Есть подделки. Ниже на фото представлен симистор BTA16-600B, который согласно технического описания должен иметь изолированный корпус, но при проверке мультиметром металлическое основание звонится на второй вывод (A2), как будто это BTB16-600B.

Будьте осторожны и перед установкой проверяйте мультиметром сопротивление между основанием корпуса симистора и всеми его выводами, это сопротивление должно быть бесконечным. В противном случае устанавливайте симистор на радиатор через изоляционные втулки и прокладки, как и в случае с серией BTB.

Выбор площади радиатора

Я проводил немало испытаний своего регулятора мощности 1кВт и могу порекомендовать теплоотвод с минимальной площадью 150см 2 . Это с тем учетом, что теплоотвод находится снаружи корпуса регулятора мощности, а триак установлен на радиатор с применением теплопроводной пасты КПТ-8.

Ниже представлены фотографии опыта, при котором регулятор мощности 1кВт был нагружен нагревателем воды, с выставленным током 5 Ампер. Теплоотвод (140см 2 ) установлен с применением пасты КПТ-8, корпус симистора BTA08-600B изолированный (прокладка не устанавливалась). В течение 15 минут происходил рост температуры радиатора до 52 0 C, после чего рост прекратился, и еще 45 минут работы температура оставалась постоянной.

Верхняя граница рабочей температуры перехода у BTA08-600B равна 125 0 C. Температура его корпуса, а тем более радиатора, будет значительно ниже. Поэтому, я настоятельно рекомендую выбирать площадь теплоотвода таким образом, чтобы при долговременной мощности 1кВт его температура не превышала 60-70 0 C.

Сечение проводов

Для соединения платы с сетью или узлами коммутации (розетка, выключатель и т.д.) необходим провод ШВВП, имеющий сечение 0.75мм 2 . Можно применить провод ВВГ сечением 1.5мм 2 , но он неудобен из-за своей жесткости.

При эксплуатации провод не должен быть горячим.

Не применяйте в регуляторах мощности тонкие провода, это ненадежно со стороны пожарной безопасности.

Уязвимые места регулятора мощности

Уязвимыми местами являются винтовые клеммы. Они должны быть хорошего качества, без люфтов. Винты должны иметь неповрежденную резьбу. Если контакт будет ослаблен, то это место будет нагреваться и с течением времени произойдет разрушение клемм с возможным возгоранием. Клеммы можно заменить пайкой.

Печатная плата

Печатная плата регулятора мощности 1кВт имеет ширину силовых дорожек 4мм, чего вполне достаточно. За час работы на полной мощности дорожки теплые (не горячие).

Силовые дорожки можно покрыть толстым слоем олова, это повысит их сечение и избавит от коррозии.

Печатная плата регулятора мощности СКАЧАТЬ

Источник

Читайте также:  Разноцветные сердечки своими руками
Оцените статью