Прерыватель на основе электромагнитного реле
Сегодня мы с вами соберем простую конструкцию прерывателя на основе электромагнитного реле. Эта конструкция имеет широкую область применения. В основном данное реле применяется в автомобильной технике (прерыватель указателей поворота). По сути, эта схема отличается максимальной простотой сборки, повторить ее может любой новичок.
Основа работы схожа с работой низкочастотного мультивибратора. Состоит схема из электромагнитного реле и электролитического конденсатора.
От емкости конденсатора зависит частота работы схемы. При подаче напряжения на реле заряжается конденсатор, затем его емкость разряжается на обмотку реле, от емкости конденсатора зависит время заряда конденсатора, чем больше емкость, тем больше времени уходит на зарядку, следовательно, устройство будет работать в качестве низкочастотного прерывателя.
По такой простой схеме можно реализовать ряд интересных и образовательных конструкций. Если подключить к соответствующим выводам реле лампочку, то последняя будет периодически мигать, частота этих миганий зависит от емкости выбранного конденсатора, о чем было упомянуто выше. По идее, мы получаем простой прерыватель указателей поворота — моргатель, который можно применить в транспортных средствах, в частности в легковых автомобилях.
Выбор электролитического конденсатора не критичен, можно использовать конденсаторы с напряжением от 16 до 100 Вольт, емкость от 100 до 4700 мкФ (смотря какая частота работы нужна).
В моем случае использовалось электромагнитное реле от сетевого стабилизатора напряжения с током 10-15 А, но мощность реле зависит от мощности подключенной нагрузки.
Эта схема отличается особой точностью работы, время нахождения в разомкнутом состоянии ровно времени нахождения в замкнутом состоянии.
Устройство можно использовать для управления большими нагрузками и не только низковольтных. Оптимальное напряжение питания составляет 12 Вольт, хотя обмотка реле рассчитана на гораздо большее напряжение.
Источник
Реле для поворотников своими руками
Самый основной недостаток обычного или электромеханического реле заключается в том, что контакты со временем обгорают. К тому же не стоит забывать, что не исключено и их залипание, даже если реле новое.
Представленная схема не нуждается в дополнительной настройке и заработает сразу после включения в цепь. А подключается она в разрыв плюса питания или иначе говоря последовательно с нагрузкой. Наглядно это продемонстрировано на рисунке ниже:
Такая схема будет работать ну буквально вечно, а стоит будет гораздо меньше чем готовый вариант из магазина.
Теперь давайте более подробно разберем как работает данная схема. По сути это несимметричный мультивибратор, слегка подогнанный для работы с полевым ключом. В начальный момент времени через диод d1 заряжается конденсатор c1, оба транзистора закрыты.
Зарядный ток конденсатора будет удерживать оба транзистора в состоянии насыщения. В этом режиме транзисторы полностью открыты и кпд схемы достигает своего апогея. По мере нарастания напряжения на конденсаторе ток его заряда упадет и ключи соответственно выйдут из режима насыщения, а в таком состоянии силовой ключик уже будет нагреваться.
Так как конденсатор у нас был заряжен обратной полярностью, то на базу транзистора vt1 будет приложено, грубо говоря, плюсовое питание, что приводит к скоростному запиранию транзистора, а вслед за ним закрывается и полевик.
Если пояснением работы этой простой схемы понасиловал вам мозги, вы уж простите.
Время срабатывания полевого транзистора, а следовательно и миганий ламп, зависит от номиналов конденсатора c2 и резисторов r2 и r3. Чем больше емкость конденсатора или сопротивление резисторов, тем меньше частота миганий. И наоборот, чем меньше номинал резисторов r2 и r3, а также конденсатора с2, тем соответственно будет выше частота миганий поворотников.
С таким раскладом схема может коммутировать нагрузки с мощностью до 100-150 ватт, но к транзистору, скорее всего, нужно будет прикрутить небольшой радиатор.
А при мощности около 50 Вт в радиаторе нет необходимости. Если нагрузка не очень большая, например, светодиодная лампа, то вместо полевого транзистора можно использовать биполярный транзистор обратной проводимости. В этом случае схема будет выглядеть следующим образом:
Ссылку на плату вы сможете найти в описании под оригинальным видеороликом автора проекта. Ссылка на ролик ниже.
Благодарю за внимание. До новых встреч!
Источник
Твердотельное реле своими руками
Для многих схем силовой электроники твердотельное реле стало не просто желательно но и необходимо. Их преимущество – в количестве срабатываний несоизмеримо больших, по сравнению с электромеханическими, на порядок (а на практике и того больше).
До изготовления твердотельного реле я обычно изготавливал цепочки из симистора и схемы управления с гальванической развязкой типа симистороной оптопары MOC30***. Для примера будем использовать следующие (базовые) компоненты:
- Симисторная оптопара MOC3083 (VD1)
- Симистор с изолированным анодом марки BT139-800 16A (V1 от Philips)
- Сопротивление для ограничения тока через светодиод MOC3083 (R1 750Ом 0,5Вт)
- Светодиод индикации АЛ307А (LD1)
- Резистор на управляющий электрод симистора 160 Ом (R2 , 0.125Вт)
Рис 1
Твердотельное реле – эта как бы инкапсуляция такой цепочки. Для изготовления твердотельного реле воспользуемся рекомендациями предложенными в сборнике [1 ] . В ней автор рекомендует для повышения надежности электронных устройств (и самодельных в том числе) заключать их в эпоксидный брикет, приводя подробное описание данной технологии. Посмотрим, что нам понадобиться для изготовления твердотельного реле по этой методике. (см. фото 1). Отметим попутно, что во время написания статьи [ 1 ] клеевые пистолеты ещё не были столь распространены как сейчас.
Итак, выбираем подложку из металла, который быстро проводит тепло, например алюминий. Размер и толщина подложки выбираются исходя из количества тепла, которое потребуется отвести от симистора с учетом того , что сама подложка для этой цели, может быть установлена на металлической поверхности. Далее выбираем опалубку для заливки, с таким расчетом, чтобы внутри нее разместить все элементы указанной цепочки. В качестве опалубки используем любые удобные элементы из пластика напр. цилиндр от пластиковой трубы, часть пластикового короба от кабельного лотка, в моем случае опалубка изготовлена из части пенала для принтерных расходников. Далее приклеиваем пистолетом опалубку к подложке, и заклеиваем отверстия и щели, если они есть. Помещаем схему, спаенную и проверенную. Здесь необходимо отметить, что выводы у симистора определяются не всегда однозначно. Чтобы проверить открывается ли симистор от протекания тока через светодиод оптопары MOC3083, в большинстве случаев, можно узнать (без подключения напряжения 220В), подцепившись тестером на мегаомах к выходным концам симистора схемы. При открывании симистора сопротивление будет падать от десятком мегаом до единиц килом (по тестеру).
Для симистора, в обязательном порядке, делаем промежуточный слой между спинкой корпуса и подложкой из теплопроводной пасты марки КПТ-8. Если у симистора анод не является изолированным, необходима также изоляционная прокладка, например из пластинки слюды, вырезанной по размеру корпуса и обработанной пастой КПТ с обеих сторон (все элементы схемы не должны иметь электрического контакта с подложкой!). Далее, прижав корпус симистора, фиксируем его на подложке с помощью клеевого пистолета (рис 2).
Укладываем остальные части схемы, обращая внимание, чтобы они не касались металлической подложки, а находились как бы «на весу». Готовим компаунд для заливки формы в отдельной емкости. Для этого основной компонент эпоксидки смешиваем с порошком алебастра, не добавляя пока отвердитель. Следует отметить, что алебастр добавляем не только для увеличения объема компаунда, но и для снижения текучести эпоксидки. В противном случае раствор ЭДП будет вытекать через мельчайшие отверстия в форме. Добавляем отвердитель к полученной массе компаунда и вновь перемешиваем. Масса должна сохранять текучесть. Заполнив форму не следует беспокоиться об образовавшихся неровностях на поверхности брикета. (рис 3).
Если расположить его на горизонтальной поверхности, то силы гравитации сделают поверхность достаточно гладкой в течении получаса (рис 4) и имеющую цвет светлого кофе. Автор далек от мысли, чтобы настаивать на указанных материалах и технологии, как единственно возможной. Наверняка, например, подойдет использование клея типа «жидкие гвозди» или полиуретановая пена в качестве компаунда, лишь бы материал обладал низкой электропроводностью и достаточной электрической прочностью.
Теперь внимательно посмотрим на исходную схему. Если подключать новоиспеченное реле к Arduino и т.п. устройствам на микроконтроллерах с питанием не более 5В, этой схемы будет достаточно. Что же делать , если необходимо расширить диапазон управляющих напряжений, скажем, от 5 до 24 В? Схемотехника MOC30** позволяет нам это сделать без дополнительных ухищрений, поскольку диапазон тока через светодиод оптопары простирается там до 50 мА. Сложнее обстоит дело с индикаторным светодиодом, таким, например, как АЛ307А . Согласно рекомендациям производителей: не следует устанавливать постоянный прямой ток /ПР через светодиод, близкий к максимальному пределу, указанному в даташите. Обычно это 20 мА. Длительная работа с таким током снижает долговременную надёжность. Для получения приемлемой яркости свечения достаточно задать ток 4…10 мА. Т.Е. нужно каким-то образом организовать схему так, чтобы ток, протекающий по цепи АЛ307 – 1,2 MOC3083 мало зависел бы от прилагаемого напряжения. Кажется , что наиболее просто этого добиться подключив стабилитрон D после балластного сопротивления R1, учитывая тот факт, что напряжение на светодиоде, как правило линейно зависит от протекаемого тока, начиная от некоторого уровня (напр. 1,6 В) . В этом случае стабилитрон с опорным напряжением 3,3В откроется при достижения опорного, и будет «стравливать» избыточный ток через себя.
Но более эффективны в этом случае схемы с питанием данной цепи источником тока [ 2, 3 ].
Следуя рекомендациям указанных источников, построим схему с питанием стабильным током в диапазоне 7—14 мА и в диапазоне питающих напряжений 4—24В.
Рис 2
Освоив данную технологию и «набив руку», без сомнения, можно изготавливать твердотельные реле в больших количествах словно «горячие пирожки».
Литература:
- Бирюков С.А.Устройства на микросхемах: цифровые измерительные устройства, источники питания, любительские конструкции, Москва «Солон-Р», 2000, стр. 188
- П. Хоровиц, У Хилл Искусство схемотехники, Москва, «Мир» ред. М.В. Гальперина 1986 Том 1. Стр.103
- Горошков Б.И. Радиоэлектронные устройства (Справочник) М. «Радио и связь» 1984г
Источник