Электронная катушка своими руками

Как сделать электромагнит в домашних условиях

Любая однослойная или многослойная катушка из изолированной проволоки — соленоид — при пропускании по ней тока приобретает свойства магнита. Силу такого магнита при данном токе можно значительно увеличить, снабдив соленоид железной арматурой. Полученная система называется электромагнитом.

Делая отдельные части арматуры подвижными относительно других, получаем механизм, который может производить механическую работу при включении в его обмотку тока.

По конструкции электромагниты можно объединить в четыре основных группы:

с внешним якорем,

с поворотным якорем,

электромагниты для создания магнитных полей.

Электромагнит – искусственный магнит, у которого магнитное поле возникает и концентрируется в ферромагнитном сердечнике в результате прохождения электрического тока по охватывающей его обмотке, т.е. при пропускании тока через катушку помещенный внутри нее сердечник приобретает свойства естественного магнита.

Область применения электромагнитов очень обширна. Их используют в электрических машинах и аппаратах, в устройствах автоматики, в медицине, в различного рода научных исследованиях. Наиболее часто электромагниты и соленоиды используются для перемещения каких-то механизмов, а на производствах для подъёма груза.

Так, например, грузоподъемный электромагнит является очень удобным, производительным и экономичным механизмом: для закрепления и освобождения транспортируемого груза не требуется обслуживающий персонал. Достаточно положить электромагнит на перемещаемый груз и включить электрический ток в катушку электромагнита и груз притянется к электромагниту, а для освобождения от груза необходимо лишь отключить ток.

Все типы электромагнитов применяют как для постоянного, так и для однофазного переменного тока, с той лишь разницей, что при переменном токе все железные части делают, для уменьшения потерь на токи Фуко, из листового железа, тогда как для постоянного тока их в большинстве случаев делают из сплошного железа.

Конструкция электромагнита легка для повторения и в сущности не представляет собой ничего кроме сердечника и катушки из проводника. В этой статье мы ответим на вопрос как сделать электромагнит своими руками.

Как работает электромагнит (теория)

Если по проводнику протекает электрический ток, то вокруг этого проводника образуется магнитное поле. Так как ток может течь только тогда, когда цепь замкнута, то проводник должен представлять собой замкнутый контур, как, например, круг, который является простейшим замкнутым контуром.

Раньше проводником, свернутым в круг, часто пользовались для наблюдения действия тока на магнитную стрелку, помещенную в его центре. В этом случае стрелка находится на равном расстоянии от всех частей проводника, благодаря чему легче можно наблюдать действие тока на магнит.

Чтобы усилить действие электрического тока на магнит, можно прежде всего увеличить ток. Однако, если обогнуть проводник, по которому протекает какой-то ток, два раза вокруг охватываемого им контура, то действие тока на магнит удвоится.

Таким образом можно во много раз увеличить это действие, огибая проводник соответствующее число раз вокруг данного контура. Получающееся при этом проводящее тело, состоящее из отдельных витков, число которых может быть произвольным, называется катушкой.

Вспомним курс школьной физики, а именно о том, что при протекании электрического тока через проводник возникает магнитное поле. Если проводник свернуть в катушку линии магнитной индукции всех витков сложатся, и результирующее магнитное поле будет сильнее чем для одиночного проводника.

Магнитное поле, порожденное электрическим током в принципе не имеет существенных отличий по сравнению с магнитным если вернуться к электромагнитам, то формула его тяговой силы выглядит так:

где F – сила тяги, кГ (сила измеряется также в ньютонах, 1 кГ =9,81 Н, или 1 Н =0,102 кГ); B – индукция, Тл; S – площадь сечения электромагнита, м2.

То есть сила тяги электромагнита зависит от магнитной индукции, рассмотрим её формулу:

Здесь U0 – магнитная постоянная (12.5*107 Гн/м), U – магнитная проницаемость среды, N/L – число витков на единицу длины соленоида, I – сила тока.

Отсюда следует, что сила с которой магнит притягивает что-либо зависит от силы тока, количества витков и магнитной проницаемости среды. Если в катушке нет сердечника – средой является воздух.

Ниже приведена таблица относительных магнитных проницаемостей для разных сред. Мы видим, что у воздуха она равна 1, а у других материалов в десятки и даже сотни раз больше.

В электротехнике используют специальный металл для сердечников, его часто называют электротехнической или трансформаторной сталью. В третьей строке таблицы вы видите «Железо с кремнием» у которого относительная магнитная проницаемость равна 7*103 или 7000 Гн/м.

Это и есть усредненное значение для трансформаторной стали. Она отличается от обычной как раз-таки содержанием кремниями. На практике её относительная магнитная проницаемость зависит от приложенного поля, но не будем углубляться в подробности. Что даёт сердечник в катушке? Сердечник из электротехнической стали усилит магнитное поле катушки примерно в 7000-7500 раз!

Всё что нужно запомнить для начала – это то, что от материала сердечника внутри катушки зависит магнитная индукция, а от неё зависит сила с которой будет тянуть электромагнит.

Практика

Одним из наиболее популярных опытов, которые проводят для демонстрации возникновения магнитного поля вокруг проводника является опыт с металлической стружкой. Проводник накрывают листом бумаги и на него насыпают магнитную стружку, потом через проводник пропускают электрический ток, и стружка изменяет своё располагаясь каким-то образом на листе. Это уже почти электромагнит.

Но для электромагнита просто притягивать металлические стружки недостаточно. Поэтому нужно его усилить, исходя из вышесказанного – нужно сделать катушку, намотанную на металлический сердечник. Простейшим примером – будет изолированный медный провод, намотанный на гвоздь или болт.

Такой электромагнит способен притягивать разные булавки, скрепи и тому подобное.

В качестве провода можно использовать либо любой провод в ПВХ или другой изоляции, либо медный провод в лаковой изоляции типа ПЭЛ или ПЭВ, которые используются для обмоток трансформаторов, динамиков, двигателей и прочее. Найти его можно либо новый в катушках, либо смотать с тех же трансформаторов.

10 Нюансов изготовления электромагнитов простыми словами:

1. Изоляция по всей длине проводника должна быть однородной и целой, чтобы не было межвитковых замыканий.

2. Намотка должна идти в одну сторону как на катушке с нитками, то есть нельзя изогнуть провод на 180 градусов и пойти в обратном направлении. Это связано с тем что результирующее магнитное поле будет равно алгебраической сумме полей каждого витка, если не вдаваться в подробности, то витки, намотанные в обратную сторону, будут порождать электромагнитное поле противоположное по знаку, в результате поля будут вычитаться и в результате сила электромагнита будет меньше, а если витков в одном и другом направлении будет одинаковое количество – магнит совсем ничего не будет притягивать, так как поля подавят друг друга.

3. Сила электромагнита также будет зависеть от силы тока, а он от напряжения приложенного к катушке и её сопротивления. Сопротивление катушки зависит от длины провода (чем длиннее, тем оно больше) и площади его поперечного сечения (чем больше сечение, тем меньше сопротивление) приблизительный расчёт можно провести по формуле – R=p*L/S

4. Если ток будет слишком большим – катушка сгорит

5. При постоянном токе – ток будет больше, чем при переменном из-за влияния реактивного сопротивления индуктивности.

6. При работе на переменном токе – электромагнит будет гудеть и дребезжать, его поле будет постоянно менять направление, а его тяговая сила будет меньше (в два раза) чем при работе на постоянном. При этом сердечник для катушек переменного тока выполняется из тонколистового металла, собираясь в единое целое, при этом пластины друг от друга изолируются лаком или тонким слоем окалины (оксида), т.н. шихты – для уменьшения потерь и токов Фуко.

7. При одинаковой тяговой силе электрический магнит переменного тока будет весить в два раза больше, соответственно возрастают и габариты.

8. Но стоит учесть, что электромагниты переменного тока обладают большим быстродействием чем магниты постоянного тока.

9. Сердечники электромагнитов постоянного тока

10. Оба типа электромагнитов могут работать как на постоянном, так и на переменном токе, вопрос только какой силой он будет обладать, какие потери и нагрев будут происходить.

3 идеи для электромагнита из подручных средств на практике

Как уже было сказано самый простой способ сделать электромагнит – использовать металлический стержень и медный провод подобрав и один и другой под нужную мощность. Напряжение питания этого устройства подбирается опытным путем исходя из силы тока и нагрева конструкции. Для удобства можно использовать пластиковую катушку от ниток или подобного, а под её внутренее отверстие подобрать сердечник – болт или гвоздь.

Второй вариант – использовать почти готовый электромагнит. Вспомните об электромагнитных коммутационных приборах – реле, магнитных пускателях и контакторах. Для использования на постоянном токе и напряжении 12В удобно использовать катушку от автомобильных реле. Всё что нужно сделать – снять корпус выломать подвижные контакты и подключить питание.

Для работы от 220 или 380 вольт удобно использовать катушки магнитных пускателей и контакторов, они намотаны на оправке и легко вынимаются. Сердечник подберите исходя из площади поперечного сечения отверстия в катушке.

Так вы можете включать магнит от розетки, а регулировать его силу удобно если использовать реостат или ограничивать ток с помощью мощного сопротивления, например, нихромовой спирали.

Источник

Самодельная катушка для импульсного металлоискателя

Решил собрать свой первый импульсный металлоискатель Clone PI-W и, вот, дело дошло до изготовления поисковой моно-катушки. А так как в настоящее время я испытываю некоторые финансовые затруднения, то передо мной стояла непростая задача — сделать катушку самому из максимально дешевых материалов.

Забегая вперед, сразу скажу, что с задачей я справился. В итоге у меня получился вот такой датчик:

Кстати говоря, получившаяся катушка-кольцо отлично подойдет не только для Clone, но и практически для любого другого импульсника (Кощей, Tracker, Пират).

Далее я расскажу, как сделать поисковую катушку для металлоискателя своими руками, потратив на это менее 500 рублей.

Рассказывать буду очень подробно, так как дъявол зачастую кроется в деталях. Тем более, что коротких историй изготовления катушек в инете пруд пруди (типо, берем вот это, тут отрезаем, обматываем, склеиваем и готово!) А начинаешь делать сам и оказывается, что о самом важном упомянули вскользь, а кое о чем вообще забыли сказать. И получается, что все сложнее, чем казалось в самом начале.

Здесь такого не будет. Готовы? Поехали!

Задумка

Проще всего для самостоятельного изготовления мне показалась такая конструкция: берем диск из листового материала толщиной

4-6 мм. Диаметр этого диска определяется диаметром будущей обмотки (в моем случае он должен быть равен 21 см).

Затем к этому блинчику с обоих сторон приклеиваем два диска чуть большего диаметра, чтобы получилась как бы шпулька для намотки проволоки. Т.е. такая сильно увеличенная по диаметру, но сплюснутая по высоте катушка.

Для наглядности попробую изобразить это на чертеже:

Надеюсь, основная задумка ясна. Просто три диска, склеенные между собой по всей площади.

Выбор материала

В качестве материала я планировал взять оргстекло. Оно отлично обрабатывается и клеится дихлорэтаном. Но, к сожалению, так и не смог найти его забесплатно.

Всякие колхозные материалы типа фанеры, картона, крышек от ведер и т.п. я сразу отбросил, как непригодные. Хотелось чего-то прочного, долговечного и желательно водонепроницаемого.

И тогда мой взор обратился к стеклоткани.

Ни для кого не секрет, что из стеклоткани (или из стекломата, стеклохолста) делают все, что душе угодно. Даже моторные лодки и бамперы для автомобилей. Ткань пропитывают эпоксидной смолой, придают ей нужную форму и оставляют до полного отвердения. Получается прочный, водостойкий, легкообратываемый материал. А это как раз то, что нам нужно.

Итак, нам нужно сделать три блинчика и уши для крепления штанги.

Изготовление отдельных частей

Блины №1 и №2

Расчеты показали, что для получения листа толщиной 5.5 мм нужно взять 18 слоев стеклоткани. Чтобы снизить расход эпоксидки, стеклоткань лучше заранее нарезать кружочками требуемого диаметра.

Для диска диаметром 21 см как раз хватило 100 мл эпоксидной смолы.

Каждый слой нужно тщательно промазать, а затем всю стопку положить под пресс. Чем больше будет давление, тем лучше — лишняя смола выдавится, масса конечного изделия станет чуточку меньше, а прочность чуточку больше. Я нагрузил сверху примерно сотню килограмм и оставил до утра. На следующий день получился вот такой блинчик:

Это самая массивная часть будущей катушки. Весит он — будь здоров!

Потом расскажу, как за счет этой запчасти можно будет ощутимо снизить массу готового датчика.

Точно таким же образом был сделан диск диаметром 23 см и толщиной 1.5 мм. Его масса — 89 г.

Блин №3

Третий диск клеить не пришлось. В моем распоряжении оказался лист стеклотекстолита подходящего размера и толщины. Это была печатная плата от какого-то древнего устройства:

К великому сожалению, плата была с металлизированными отверстиями, поэтому пришлось потратить какое-то время на их высверливание.

Я решил, что это будет верхний диск, поэтому проделал в нем отверстие под ввод кабеля.

Уши для штанги

Остатков текстолита как раз хватило на уши для крепления корпуса датчика к штанге. Выпилил по два кусочка на каждое ухо (чтобы было прочно!)

В ушах надо сразу же просверлить отверстия под пластиковый болт, так как потом будет очень неудобно этим заниматься.

Кстати, это крепежный болт для стульчака унитаза.

Итак, все составляющие нашей катушки готовы. Осталось все это склеить в один большой бутерброд. И не забыть завести внутрь кабель.

Сборка в одно целое

Сначала верхний диск из дырявого стеклотекстолита склеил со средним блинчиком из 18 слоев стеклоткани. На это ушло буквально несколько миллилитров эпоксидки — этого хватило, чтобы промазать обе склеиваемые поверхности по всей площади.

Монтаж ушей

С помощью лобзика пропилил пазы. В одном месте, естественно, слегка перестарался:

Чтобы ухи хорошо легли, сделал небольшой скос на краях пропилов:

Теперь надо было решить, какой вариант лучше? Уши-то можно поставить по-разному.

Катушки промышленного производства чаще сделаны по правому варианту, мне же больше нравится левый. Я вообще частенько принимаю левые решения.

По идее, правый способ лучше сбалансирован, т.к. крепление штанги оказывается ближе к центру тяжести. Но далеко не факт, что после облегчения катушки, ее центр тяжести не сместится в ту или иную сторону.

Левый способ крепления чисто визуально выглядит приятнее (ИМХО), к тому же в этом случае общая длина металлоискателя в сложенном виде будет на пару сантиметров меньше. Для того, кто планирует возить прибор в рюкзаке, это может оказаться важным.

В общем, я свой выбор сделал и приступил к вклеиванию. Обильно намазал бокситкой, надежно зафиксировал в нужном положении и оставил застывать:

После застывания, все торчащее с обратной стороны сошкурил наждачкой:

Ввод кабеля

Затем с помощью круглого надфиля подготовил канавки для проводников, завел соединительный кабель через отверстие и вклеил его намертво:

Для предотвращения сильных перегибов, кабель в месте ввода нужно было как-то усилить. Для этих целей я заюзал, невесть откуда взявшуюся у меня, вот такую резиновую фигнюшку:

Конечно, если бы у меня был нормальный гермоввод, то было бы гораздо лучше, но. и так сойдет.

Оставалось приклеить третий блин (донышко).

Доделываем каркас

Чтобы приклеить третий блинчик потребовалось несколько миллилитров бокситки и пару часов времени на то, чтобы все схватилось. Вот результат:Таким образом, я получил жесткий и прочный каркас, полностью подготовленный для намотки провода.

Герметизация обмотки

В качестве обмоточного провода был использован медный эмалированный провод диаметром 0.71 мм. После намотки 27 витков, датчик потяжелел еще на 65 грамм:

Теперь обмотку надо было как-то законопатить. В качестве замазки применил смесь эпоксидной смолы и мелко нарезанного стекловолокна (узнал про этот суперский рецепт из этой статьи).

Короче, настругал немного стеклоткани:

и круто замешал ее с бокситкой с добавлением пасты от шариковой ручки. Получилась вязкая субстанция, похожая на мокрые волосы. Таким составом можно замазывать любые щели без проблем:

Кусочки стекловолокна придают шпатлевке необходимую вязкость, а после застывания обеспечивают повышенную прочность клеевого шва.

Чтобы смесь как следует уплотнилась, а смола пропитала витки провода, обмотал все это изолентой в натяг:

Изолента должна быть обязательно зеленой или, на худой конец, синей.

После того, как все хорошенько застыло, мне стало интересно, насколько прочной получилась конструкция. Оказалось, что катушка спокойно выдерживает мой вес (около 80 кг).

На самом деле такая сверхпрочная катушка нам не нужна, гораздо важнее ее вес. Слишком большая масса датчика обязательно даст о себе знать болью в плече, особенно, если вы планируете вести длительный поиск.

Облегчайзинг

Чтобы уменьшить вес катушки, было решено выпилить некоторые участки конструкции:

Данная манипуляция позволила скинуть 168 грамм лишнего веса. При этом прочность датчика практически не уменьшилась, в чем можно убедиться благодаря данному видео:

Теперь задним умом понимаю, как можно было изготовить катушку еще немного легче. Для этого надо было заранее наделать больших отверстий в среднем блинчике (перед тем, как все склеивать). Что-то типа такого:

Пустоты внутри конструкции почти не сказались бы на прочности, но зато снизили бы общую массу еще грамм на 20-30. Сейчас, конечно, уже поздняк метаться, но на будущее учту.

Еще один путь облегчения конструкции датчика — уменьшить ширину наружного кольца (где уложены витки провода) миллиметров на 6-7. Конечно, это можно сделать и сейчас, но пока нет такой необходимости.

Финишная окраска

Нашел отличную краску для стеклотекстолита и изделий из стекловолокна — эпоксидная смола с добавлением красителя нужного цвета. Так как вся конструкция моего датчика изготовлена на основе бокситки, то краска на основе смолы будет иметь отличную адгезию, и ляжет как родная.

В качестве красителя черного цвета применил алкидную эмаль ПФ-115, добавляя ее до получения нужной укрывистости.

Как показала практика, слой такой краски держится очень прочно, а выглядит так, будто изделие обмакнули в жидкий пластик:

При этом цвет может быть любым в зависимости от используемой эмали.

Итоговая масса поисковой катушки вместе с кабелем после покраски — 407 г

Кабель отдельно весит

Проверка

После того, как наша самодельная катушка для металлоискателя была полностью готова, надо было проверить ее на отсутствие внутреннего обрыва. Самый простой способ проверки — тестером измерить сопротивление обмотки, которое в норме должно быть очень низким (максимум 2.5 Ома).

В моем случае сопротивление катушки вместе с двумя метрами соединительного кабеля оказалось в районе 0.9 Ом.

К сожалению, таким простым способом не получится выявить межвитковое замыкание, поэтому приходится рассчитывать на свою аккуратность при намотке. Замыкание, если оно есть, сразу же проявит себя после запуска схемы — металлоискатель будет потреблять повышенный ток и иметь крайне низкую чувствительность.

Заключение

Итак, считаю, что поставленная задача была выполнена успешно: мне удалось сделать очень прочную, водостойкую и не слишком тяжелую катушку из самых бросовых материалов. Список расходов:

  • Лист стеклотекстолита 27 х 25 см — бесплатно;
  • Лист стеклоткани, 2 х 0.7 м — бесплатно;
  • Эпоксидная смола, 200 г — 120 руб;
  • Эмаль ПФ-115, черная, 0.4 кг — 72 руб;
  • Намоточный провод ПЭТВ-2 0.71 мм, 100 г — 250 руб;
  • Соединительный кабель ПВС 2х1.5 (2 метра) — 46 руб;
  • Кабельный ввод — бесплатно.

Теперь передо мной стоит задача изготовления точно такой же нищебродской штанги. Но это уже совсем другая история.

Источник

Читайте также:  Террариум для своими руками для варана
Оцените статью