Эфирный конденсатор своими руками

Делаем высоковольтный конденсатор в домашних условиях

Любители разных высоковольтных опытов часто сталкиваются с проблемой, когда бывает необходимо использовать высоковольтные конденсаторы. Как правило, такие конденсаторы очень сложно найти, а если и удастся, то придется заплатить за них немало денег, что по силам отнюдь не каждому. Помимо этого политика нашего сайта просто не позволит вам тратить средства на покупку того, что можно самому изготовить, не выходя из дому.

Как вы уже догадались, данный материал мы решили посвятить сборке высоковольтного конденсатора, чему также посвящен авторский видеоролик, который мы предлагаем вам посмотреть перед началом работы.

Что же нам понадобится:
— нож;
— то, что мы будем использовать в качестве диелектрика;
— пищевая фольга;
— прибор для измерения емкости.

Сразу отметим, что в качестве диелектрика автор самодельного конденсатора использует самые обычные самоклеющиеся обои. Что касается прибора для измерения емкости, то его использование не обязательно, поскольку предназначен этот прибор только для того, чтобы в конце можно было узнать, что получилось в итоге. С материалами все ясно, можно приступать к сборке самодельного конденсатора.

Первым делом отрезаем два куска от самоклеющихся обоев. Нужно примерно полметра, однако желательно, чтобы одна полоска получилась чуть длиннее другой.

Далее берем пищевую фольгу и отрезаем кусок по длине короткого куска от самоклеющихся обоев. По словам автора, лучше будет если кусок фольги будет примерно на 5 см меньше куска обоев.

Получившийся лист фольги режим ровно на две части по длине.

Следующим делом кладем на ровную поверхность один кусок обоев, на который аккуратно кладем один кусок пищевой фольги. Фольге нужно класть так, чтобы по трем краям получился зазор примерно в сантиметр. С четвертой стороны фольга будет выпирать, что вполне нормально на этом этапе.

Сверху кладем второй лист обоев.

На нем кладем второй лист фольги. Только на этот раз делаем так, чтобы выступала фольга с противоположной предыдущему шагу стороне. То есть, если у автора первый кусок выступал снизу, то на этот раз он должен выступать сверху. Отдельно следует отметить, что листы фольги не должны касаться друг друга.

Далее берем получившуюся заготовку и сворачиваем в трубочку.

Теперь с одного края снимаем подложку и проклеиваем наш конденсатор.

После этого сгибаем края и сворачиваем фольгу как конфетный фантик. Таким образом мы получаем выходы, к которым и будут крепиться провода.

Источник

Эфирный конденсатор своими руками

Конденсатор – детям не игрушка

(Архив пионерской мудрости)

Страшная история из нефильма ужасов

«Заряженный высоковольтный конденсатор можно отнести к источнику постоянного тока. Считается, что постоянный ток менее опасен, чем переменный. Исходя из своего опыта, могу не согласиться. Если Вы «подключаетесь» к бытовой электросети, то Вы будете дергаться. Хотя частота тока в розетке равна 50 Гц, и человек не успеет отреагировать на столь быстрое событие, тем не менее, у Вас будет шанс в процессе конвульсий самостоятельно освободиться от действия электрического тока. Ведь напряжение в розетке 50 раз в секунду равно нулю. Если Вы «подключаетесь» к мощному источнику постоянного тока, то тут без вариантов. Ваши мышцы сильно сократятся, и никакой силы воли не хватит, чтобы расслабить их. Вы будете словно приклеенный к источнику постоянного тока. При этом Ваша тушка будет нагреваться, медленно превращаясь в уголь. Жуть !
Поражающее действие заряженного высоковольтного конденсатора несколько иное и зависит от конкретных условий. Однако в любом случае приятных ощущений от прикосновения к электродам заряженного конденсатора у Вас точно не будет. Однозначно ! Обуглиться не успеете, но шары на лоб полезут. Чик…и ты уже на небесах ! В особо тяжких случаях при чудовищно большом заряде ( не будем говорить о цифрах) конденсатор разорвет Вас как тузик грелку. Шары будут в одном углу комнаты, а лоб – в другом углу комнаты.
Короче говоря, будьте бздительны ! При работе с высоковольтной техникой лучше перебздеть, чем недобздеть.»

Конденсатор является одним из главных элементов в блоке питания импульсных лазеров. Высоковольтный конденсатор используется для питания импульсных ламп-вспышек, а также для накачки импульсных газоразрядных лазеров. Параметры конденсатора выбираются в зависимости от конкретного типа лазера. Определяющими являются такие величины как емкость, рабочее напряжение, волновое сопротивление и собственная индуктивность конденсатора. От емкости и рабочего напряжения конденсатора зависит энергия накачки. Энергия конденсатора рассчитывается по простой формуле

Е = СU 2 /2, где Е – энергия конденсатора

С – емкость конденсатора

U – напряжение зарядки конденсатора

От волнового сопротивления зависит величина тока, который будет проходить при разряде конденсатора через малую нагрузку. Чем меньше в олновое сопротивление конденсатора , тем выше ток. В олновое сопротивление рассчитывается по формуле

ρк = √(Lк/Cк ), где ρк — в волновое сопротивление конденсатора

Lк – индуктивность конденсатора

Cк — емкость конденсатора

От собственной индуктивности конденсатора зависит быстрота передачи энергии конденсатора в нагрузку. Чем меньше индуктивность конденсатора, тем выше крутизна фронта импульса накачки. Откуда в конденсаторе индуктивность ? Дело в том, что обкладки конденсатора представляют собой проводник тока, а проводник, через который протекает ток, имеет индуктивность. Даже если конденсатор состоит лишь из двух обкладок, реальная схема конденсатора соответствует рисунку ниже.

Это классический колебательный контур с активным сопротивлением R, которое зависит от диэлектрика между обкладками конденсатора и удельного сопротивления всех токоведущих элементов конденсатора. Таким образом, заряд и разряд конденсатора происходит не мгновенно, а имеет колебательный характер. Частота колебаний определяется формулой Томпсона, из которой и вычисляется собственная индуктивность конденсатора.

, где Lк – собственная индуктивность конденсатора

Cк — емкость конденсатора

fp – основная резонансная частота

Разумеется, чем выше энергия конденсатора, тем больше мощность накачки. Однако с увеличением емкости конденсатора возрастает и время импульса накачки. Если длительность накачки не имеет принципиального значения, то для работы лазера подойдут высоковольтные электролитические конденсаторы. Такие конденсаторы можно использовать, например, для накачки рубинового или неодимового лазера. Конечно, проблематично раздобыть кондер, имеющий 1000 мкФ при рабочем напряжении 3 кВ. Но эта проблема легко решается, если использовать банк конденсаторов. При последовательном соединении отдельных конденсаторов суммарное напряжение зарядки возрастает, а емкость можно увеличить параллельным подключением конденсаторов. В радиотехнических магазинах можно купить электролитические конденсаторы, имеющие, например, 150 мкФ х 450 В.

Из таких конденсаторов можно составить банк на любую емкость и рабочее напряжение.
На рисунке ниже показан пример банка конденсаторов, эквивалентный одному конденсатору на 30 мкФ х 2 кВ.

Если длительность накачки должна быть как можно меньше, то для работы лазера электролитические конденсаторы уже не подходят, и нужно приобретать импульсные конденсаторы. К сожалению, в радиотехнических магазинах импульсные высоковольтные конденсаторы – товар редкий. В магазине «Чип и Дип» можно затариться высоковольтными конденсаторами фирмы « MURATA ».

Однако максимальное напряжение таких конденсаторов ограничено на уровне 15 кВ при емкости 1 нФ. Такие конденсаторы можно использовать для накачки самодельных азотных лазеров или лазеров на парах металлов.
Для накачки лазеров на красителях потребуется 100 – 1000 штук таких конденсаторов, соединенных параллельно. Учитывая стоимость одного такого кондера на уровне

80 руб/шт, все удовольствие обойдется любителю минимум 8 000 руб. Так еще нужно спаять из кучи конденсаторов единый банк.
Через Интернет можно приобрести конденсаторы типа КВИ-3, которые также подходят для накачки лазеров, но их цена будет еще дороже (

Также через Интернет приобретаются конденсаторы типа КПИМ, которые вполне подойдут для накачки лазера на красителе.

Эти конденсаторы имеют впечатляющие характеристики. Рабочее напряжение может быть в пределах 5 – 100 кВ при емкости конденсатора 0,1 – 240 мкФ. Но вот частота импульсов будет

Самодельный высоковольтный конденсатор

Схема конденсатора проста, но вот трудности реализации этой схемы в виде готовой конструкции возрастают с ростом рабочего напряжения конденсатора. Для начала разберем возможные варианты простого конденсатора из двух обкладок, разделенных воздухом. На рисунке 1 показаны пластины заряженного конденсатора. Если нужно изготовить конденсатор с низкой индуктивностью, то следует стремиться укорачивать все токоведущие элементы. Причем направление токов в обкладках конденсатора при разрядке должно быть противоположным, дабы снизить магнитное поле. Направление токов зависит от места подключения электродов конденсатора. Индуктивность конденсатора будет самой наименьшей, если электроды конденсатора соединены с обкладками по центру, как показано на рисунке 2.

Собственно по этой схеме изготавливаются коммерческие керамические конденсаторы. Только у высоковольтных конденсаторов обкладки имеют форму круга во избежание возникновения коронных разрядов. Возможные варианты подключения электродов к обкладкам конденсатора, а также направления токов при разрядке показаны на рисунке ниже.

Источник

Как сделать ионистр своими руками

Требования снизить размеры радиодеталей при увеличении их технических характеристиках послужило причиной появления большого количества приборов, которые сегодня используются повсеместно. Это в полной мере коснулось и конденсаторов. Так называемые ионистры или суперконденсаторы являются элементами с большой емкостью (разброс данного показателя достаточно широк от 0,01 до 30 фарад) с напряжением зарядки от 3 до 30 вольт. При этом их размеры очень малы. А так как предмет нашего разговора – это ионистр своими руками, то необходимо в первую очередь разобраться с самим элементом, то есть, что он собой представляет.

Конструктивные особенности ионистра

По сути, это обычный конденсатор с большой емкостью. Но у ионистров большое сопротивление, потому что в основе элемента лежит электролит. Это первое. Второе – это небольшое напряжение зарядки. Все дело в том, что в этом суперконденсаторе обкладки располагаются очень близко друг к другу. Именно это и является причиной сниженного напряжения, но именно по этой причине и увеличивается емкость конденсатора.

Заводские ионистры изготавливаются из разных материалов. Обкладки обычно делаются из фольги, которые разграничивает сухое вещество сепарирующего действия. К примеру, активированный уголь (для больших обкладок), оксиды металлов, полимерные вещества, у которых высокая электрическая проводимость.

Собираем ионистр своими руками

Сборка ионистра своими руками – дело не самое простое, но в домашних условиях его сделать все же можно. Есть несколько конструкций, где присутствуют разные материалы. Предлагаем одну из них. Для этого вам понадобится:

  • металлическая баночка от кофе (50 г);
  • активированный уголь, который продается в аптеках, его можно заменить истолченными угольными электродами;
  • два круга из медной пластины;
  • вата.

В первую очередь необходимо приготовить электролит. Для этого сначала надо истолочь активированный уголь в порошок. Затем сделать солевой раствор, для чего в 100 г воды надо добавить 25 г соли, и все это хорошо перемешать. Далее, в раствор постепенно добавляется порошок активированного угля. Его количество определяет консистенция электролита, она должна быть плотностью, как замазка.

После чего готовый электролит наносится на медные круги (на одну из сторон). Обратите внимание, чем толще слой электролита, тем больше емкость ионистра. И еще один момент, толщина наносимого электролита на двух кругах должна быть одинаковая. Итак, электроды готовы, теперь их надо разграничить материалом, который бы пропускал электрический ток, но не пропускал угольный порошок. Для этого используется обычная вата, хотя вариантов и здесь немало. Толщина ватного слоя определяет диаметр металлической баночки от кофе, то есть, вся эта электродная конструкция должна в нее спокойно поместиться. Отсюда, в принципе, и придется подбирать размеры самих электродов (медных кругов).

Остается только сами электроды подключить к выводам. Все, ионистр, изготовленный своими руками, да еще в домашних условиях, готов. У такой конструкции не очень большая емкость – не выше 0,3 фарад, да и напряжение зарядки всего лишь один вольт, но это самый настоящий ионистр.

Заключение по теме

Что можно еще в дополнении сказать об этом элементе. Если его сравнивать, к примеру, с аккумулятором никель-металлгидридного типа, то ионистр спокойно может держать запас электроэнергии до 10% от аккумуляторной мощности. К тому же спад напряжения у него происходит линейно, а не скачкообразно. Но уровень зарядки элемента зависит от технологического его назначения.

Источник

Читайте также:  Рукоятки для велосипеда своими руками
Оцените статью