Часы ин14 своими руками

Схемы часов на газоразрядных индикаторах ИН-14

В прошлом веке газоразрядные индикаторы использовались очень активно на многих приборах: в часах, измерительной аппаратуре, частотомерах, осциллографах, весах и многих других. Со временем их вытеснили жидкокристаллические дисплеи, технология изготовления которых проще и менее затратна, а самое главное, они компактнее и имеют большее количество разрядов. Дисплеи на жидких кристаллах дают возможность отображать показания с большей точностью.

Область применения в наше время

Сейчас газоразрядные индикаторы с цифрами промышленность уже не делает, но в свое время их наштамповали столько, что до сих пор они пылятся на складах и в частных запасах. Их можно уже назвать антиквариатом, ну как, например, во многих домах есть винтажные подсвечники, которые используются как декоративный элемент интерьера. Так и часы на газоразрядных лампах – завораживают своей подсветкой и являются отличным добавлением к интерьеру различных помещений, особенно обустроенных в стиле ретро.

Вещь красивая и полезная, но заводами, увы, уже не производится. Можно сделать их самому или купить готовые у людей, специализирующихся на их производстве. Разработано немало схем часов с применением газоразрядных индикаторов на старых и новых микросхемах. Рассмотрим наиболее простые варианты.

Этапы сборки часов

Для начала надо понять принцип работы индикаторных элементов ИН-14, практически это неоновые лампочки с группой катодов в виде цифр. В зависимости от подачи питания светится тот или иной катод поочередно, применяется принцип лампы накаливания с газоразрядным процессом.

Читайте также:  Сумочка для девочки подростка своими руками

Конструкция и основные параметры газоразрядного индикатора ИН-14

Ресурс работы таких индикаторов огромный, потому что нет длительной и большой нагрузки на один катод. Для полноценной подсветки необходимо напряжение не менее 100 В, поэтому начнем проектирование с источника питания.

Блок питания

Вариант с трансформатором, на вторичной обмотке которого будет 170 или 180 В, исключаем сразу по причине больших габаритов и веса. Подбирать железо, провода и мотать самостоятельно – дело неблагодарное и утомительное. Практичнее применить преобразователь напряжения на микросхеме MC34063, имеющий малые габариты, вес и стабильные параметры.

Схема блока питания на базе преобразователя напряжения MC34063

Все элементы монтируются на печатную плату, после сборки в большинстве случаев настройки не требуется, с 10–12 В преобразователь дает 175–180 В. Как видно, трансформатор в схеме присутствует, но очень маленький и легкодоступный для быстрого самостоятельного изготовления, такой можно купить в торговых сетях. На выходе вторичной обмотки 9–12 В переменного тока приходят на диодный мост (выпрямитель). Линейный стабилизатор LM7805 предназначен для питания электронных элементов часов.

Схема для включения ламп

Эта схема решает проблему согласования управляющего напряжения на микросхеме 5 В и управляемого напряжения питания анодов. Положительный потенциал 180 В подается на анод, а отрицательный – на катоды соответствующих цифр.

Схема управления подключением анодов лампы

Включение катодов производится схемой на базе старой микросхемы К155ИД1, которая запитывается от напряжения 5 В, что в нашем случае очень удачно. Микросхемы 155-й серии сняты с производства, но не являются дефицитом, их легко можно купить в торговых сетях и на радиорынках. Чтобы не паять микросхему к каждой лампе, схема управления катодами делается по динамическому принципу.

Схема с элементами управления анодами и катодами ламп

Теперь блок питания, схему управления катодами и анодами надо подключить к процессору часов DS1307, для согласования идеально подходит микроконтроллер Mega8.

Часы с контроллером и кнопками управления

В состав этой схемы входят:

  • часы DS1307;
  • контролер Mega8;
  • DS18B20 цифровой термометр;
  • транзисторы для светодиодной подсветки;
  • кнопки для управления настройками времени.

Полная схема часов на газоразрядных лампах ИН-14

При необходимости эту схему можно значительно упростить, убрать светодиодную подсветку, цифровой термометр и лампы для разряда секунд с элементами катодного и анодного управления.

Прошивка микроконтроллера

Программное обеспечение для часов из газоразрядных индикаторных ламп написано на Eclipse, без искажений транслируется в AVR Studio, коды с комментариями, что значительно упрощает процесс.

Положение выставляемых фьюзов

В результате прошивки устанавливаются определенные режимы и процесс управления ими. При кратковременном нажатии кнопки «MENU» по кругу отображаются режимы:

  • режим №1 – времени (отображается постоянно);
  • режим №2 – 2 мин. время, 10 сек. дата;
  • режим №3 – 2 мин. время, 10 сек. температура;
  • режим №4 – 2 мин. время, 10 сек. дата и 10 сек. температура;
  • режим настройки времени и даты устанавливается удержанием кнопки «MENU»;
  • кратковременное нажатие на кнопку «UP» (2 сек.) отображает дату, удержание этой кнопки отключает или включает подсветку;
  • кратковременное нажатие «DOWN» (2 сек.) отображает температуру;
  • понижение яркости почасовой программой с 00.00 часов до 7 утра.

Соединение основных элементов и особенности эксплуатации

В конечном итоге вся система состоит из трех печатных плат:

  • Блок питания, преобразователь напряжения на базе MC34063

  • Плата с лампами, элементами управления анодами и катодами

  • Плата с контролером Mega8 и часами DS1307

Для компактности плата сделана с двухсторонним расположением элементов, такой вариант печатных плат не догма, есть другие. Когда часы, управление катодами и анодами монтируются на одной плате, а блок питания на другой, для разряда секунд используются лампы поменьше – ИН-8. Иногда лампы выносят вообще на отдельную панель и делают двухуровневую конструкцию, на первом уровне размещается плата с часовой микросхемой и элементами управлением катодами и анодами. На втором уровне – плата с панелями для ламп, все зависит от фантазии разработчика.

Лампы ИН-14 сняты с производства, может возникнуть проблема с приобретением панелей для них. В этом случае можно использовать контакты разъемов D-SUB формата «мама» или цанговых линеек, подходящих по диаметру.

Отрезок цанговой линейки и фабричная круглая панель для лампы

Пластик линейки можно аккуратно раскрошить пассатижами и извлечь контакты, которые впаиваются в просверленные отверстия на печатной плате.

Двухуровневая плата с встроенными контактами для ламп Монтажная конструкция блока питания и часов

Теперь остается эту конструкцию упаковать в корпус (самый простой вариант – это прямоугольный короб). Материал может быть самый разнообразный: пластик, фанера, обклеенная кожей или другим декоративным материалом.

Варианты корпуса для часов на газоразрядных лампах

Трансформатор блока питания нагревается не более чем на 40 ̊С, поэтому в корпусе рекомендуется делать вентиляционные отверстия для стабильного обеспечения тока в 200 мА. Точность хода часов зависит от стабильной работы кварца 32,768 КГц, который рекомендуется брать из материнских плат ПК или сотовых телефонов, так как в торговых сетях часто попадается некачественная продукция.

Радиодетали, необходимые для сборки часов

Такой способ изготовления часов на газоразрядных лампах может осуществить человек, имеющий определенные знания в электронике и практические навыки. Начинающим можно воспользоваться услугами сайта http://vrtp.ru/index.php?showtopic=25695. Можно заказать за 800 рублей готовые печатные платы с подробными инструкциями, в которых прописано, что и куда паять. За 2 500 продается полный набор «Сделай сам», на лампах с прошитой микросхемой и остальными деталями. Можете за 3 500 рублей купить готовые часы, но это не интересно, если вы хотите что-то собрать своими руками.

Источник

Часы на ГРИ и Arduino v2 [18.03.20]

ОБНОВЛЕНИЯ

  • 27.11.2019 nixieClock_2_v2.0: добавлены эффекты, поправлены баги
  • 27.11.2019 nixieClock_2_v2.1: исправлен баг =)
  • 30.11.2019 nixieClock_2_v2.2: сброс секунд при установке времени с кнопок
  • 02.12.2019 nixieClock_2_v2.3: Добавлены расширенные настройки яркости и исправлены зависания при нулевых значениях некоторых настроек
  • 02.12.2019 nixieClock_2_v2.4: Ещё исправления ошибок при нулевых настройках
  • 17.03.2020 nixieClock_2_v2.5: Демонстрация эффекта при смене с кнопок

ОПИСАНИЕ

Решил я сделать максимально простой и доступный проект часов на газоразрядных индикаторах и Arduino! Односторонняя плата, выводные компоненты, никакой жести!

Плата:

  • Габариты платы меньше 100х100мм, то есть заказать 10 таких плат у китайцев будет стоить $2 без учёта доставки
  • Плата односторонняя, её без проблем можно сделать классическим ЛУТом!
  • Все компоненты – выводные, припаяет даже новичок
  • Т.е. плата народная: можно сделать её бабкиным утюгом и распаять горячим гвоздём!
  • Количество компонентов сведено к минимуму!
  • На данный момент в проекте есть платы под индикаторы ИН-12 и ИН-14, возможно будут сделаны и другие
  • Система состоит из двух плат: нижней (вся управляющая электроника) и верхней (лампы и светодиоды подсветки)
  • Нижних плат два варианта: обычная (4 оптопары, точка – светодиод) и с дополнительной оптопарой под неоновую точку (5 оптопар, точка – неонка)
  • У плат ИН-14, ИН-12, ИН-12_перевертыш нижняя часть одинаковая! Части плат взаимозаменяемы. Нижняя плата отличается только у ИН-14_неон

Аппаратные фишки:

  • Сердце платы – полноразмерная Arduino NANO, это означает простую сборку и прошивку
  • Питание всей схемы – 5 Вольт
  • Генератор высокого напряжения раскачивается ШИМ каналом Arduino
  • Напряжение генератора подстраивается резистором с крутилкой
  • Время задаёт RTC DS3231
  • 3 кнопки для настройки времени и будильника
  • Пищалка для будильника
  • Подсветка ламп индикаторов
  • Проект основан на плате Железнякова Андрея. Спасибо! Ссылка на проект: https://goo.gl/xTVQWP

Программные фишки:

  • “Перебор” цифр, не дающий индикаторам окисляться
  • Плавное изменение яркости точки и подсветки ламп
  • Настройка яркости цифр, “точки” и подсветки ламп
  • Два режима яркости в зависимости от времени суток
  • 6 режимов переключения индикаторов
  • 3 режима подсветки ламп
  • Будильника пока что нет

ЭФФЕКТЫ

ВИДЕО

КОМПОНЕНТЫ

Каталоги ссылок на Алиэкспресс на этом сайте:

Стараюсь оставлять ссылки только на проверенные крупные магазины, из которых заказываю сам. Также по первые ссылки ведут по возможности на минимальное количество магазинов, чтобы минимально платить за доставку. Если какие-то ссылки не работают, можно поискать аналогичную железку в каталоге Ардуино модулей . Также проект можно попробовать собрать из компонентов моего набора GyverKIT .

ПЛАТЫ

Проект

Общая страница проекта на EasyEda, с неё есть ссылки на все платы проекта

ИН-14

ИН-14 NEON точка

ИН-12

ИН-12 перевёртыш

Чертёж плат v2.0

  • 2.0 – первоначальная версия (такая есть только у меня)
  • 2.1 – убран DS18b20, куча мелких исправлений
  • 2.2 – добавления:
    • Добавлена поддержка микро-версии DS3231
    • Добавлен конденсатор по питанию платы (необязательный)
    • Добавлен конденсатор по питанию RTC (необязательный)
    • Добавлен шёлк линии отлома

Скачав gerber-файлы, вы можете заказать изготовление платы у китайцев на сервисе https://jlcpcb.com/, я получил платы через 2 недели после заказа.

  • Создать заказ и загрузить гербер файл (архив .zip) на сайт JLCPCB
  • Настроить (я менял только количество плат). Цвет платы теперь выбирается бесплатно!
  • Раньше получалось попросить китайцев сделать надрез между платами для удобного разделения. Теперь у них изменились правила, и бесплатно разделить две разные платы они не могут. Я добавил линию разреза на слой шелкографии для каждой платы, разделить платы нужно будет вручную (читайте ниже). Никаких комментариев к заказу оставлять не нужно, V-cut теперь платная функция.
  • Выбрать тип доставки и оплаты (ePacket и PayPal – мой выбор)

Открыв плату в EasyEda, вы можете экспортировать её как картинку (желательно PDF, иначе страдает качество) для дальнейшего изготовления ЛУТом или импорта в Altium (скрин 1). Параметры экспорта (скрин 2) позволяют настроить вывод нужного слоя и его зеркальность по горизонтали. В настройках печати обязательно ставить реальный размер (скрин 3). На 4 и 5 скринах показано, как убрать металлизацию нижней платы. Если вам это нужно.

ПРОШИВКА

Прошивки находятся в скачанном архиве в папке firmware:

  • lamp_test – прошивка для теста ламп, перебирает цифры на лампах по очереди (сначала 0–9 на первой, потом на второй…), пауза перебора задаётся в самом начале скетча
  • nixieClock_2_test_v1.1 – “минимальная” прошивка чисто для работы с лампами, на её основе можно написать свои часы. В сыром виде прошивка перебирает по очереди цифры на всех лампах одновременно
  • nixieClock_2_v2.5 – основная прошивка часов, со всеми эффектами, временем и прочим прочим

В самом начале кода находятся настройки. Самая важная для вас – выбор типа платы, по умолчанию выбрана плата под ИН-12. Для ИН-14 нужно сменить цифру с нуля на на 2, получится BOARD_TYPE 2

СБОРКА

Последовательность сборки и настройки. Подробности по каждому пункту читай ниже.

  • Полностью собрать нижнюю плату (можно не паять DS3231).
  • Отмыть флюс! Зубной щёткой и спиртом/калошей, или на худой конец горячей водой.
  • Выставить крутилку напряжения (в самом верху на левой половине платы) в среднее положение
  • Загрузить прошивку lamp_test, выбрав тип платы (читай код в самом начале)
  • Должен начать работать высоковольтный генератор. Аккуратно пальцы, за низ платы не хватаем
  • Измеряем напряжение на конденсаторе в верхнем левом углу платы (мультиметр ставить в режим DC, напряжение 50-300 Вольт). Крутилкой выставляем напряжение в районе 180-200 вольт
  • На данном этапе можно и нужно проверить лампы, подключив анод (белая нога) через резистор 10 кОм на “плюс” конденсатора, и любую другую ногу на “минус” конденсатора. Перебирая ноги минусовым проводом проверить все цифры индикатора. Если цифра горит не полностью, можно повысить напряжение и “прожечь” катод, или просто подождать. Лампы старые, могут начать нормально работать не сразу. ВНИМАНИЕ! Цифра (катод) в плохом “старом” состоянии потребляет бОльший ток, что может приводить к падению напряжения на генераторе и заветных 180В в работе вы не получите. Поэтому рекомендуется прокалить лампы от генератора в ручном режиме, как написано выше.
  • Далее можно смело паять лампы на верхнюю плату.
  • Обязательно отмыть флюс!
  • При включенном питании верхнюю и нижнюю платы не соединять!
  • На прошивке lamp_test будут последовательно перебираться цифры на лампах на максимальной яркости, в порт будет выводиться текущая цифра. Снова берём отвёртку и подстраиваем генератор на 180-200 Вольт (предыдущая настройка была нужна для первого пуска ламп, чтобы ничего не сгорело. При подключении ламп напряжение просядет, и его нужно будет выкрутить обратно).
  • Есть смысл оставить часы поработать на этой прошивке пару часов, чтобы лампы пришли в себя, т.к. каждый индикатор перебирает все цифры на максимальной яркости без динамической индикации.
  • Если всё нормально – прошиваем актуальную прошивку часов nixieClock_2_v2.* и наслаждаемся!

  • Что касается компонентов: индуктивность катушки зависит от частоты. Частота у нас фиксированная, так что будьте добры купить катушку на 220 мкГн с током насыщения не менее 240 мА, так как напряжение высоковольтной линии сильно проседает под нагрузкой. Индуктивность по ссылке вывозит нормально, крупнее – ещё лучше. Меньше – не ставьте, будет 140 Вольт и блэдные лампы. Диод быстрый (импульсный), в принципе любой этого класса. Резисторы любые по мощности и точности, я ставил 1/4 Вт самые обычные. Оптопары нужны высоковольтные! Обычные не подойдут. Если приспичило выпаять индикатор, то вам поможет паяльный фен. Также можно попытаться убрать припой с ног при помощи медной оплётки или паяльного отсоса. Фокус с иглой от шприца скорее всего не прокатит, диаметр отверстий под ноги лампы маловат.
  • Если вы заказывали плату на JLCPCB без прорезания V образной фрезой, разделить плату нужно будет вручную. Можно распилить ножовкой: будет лететь стеклопыль, очень мерзкая и опасная штука! Лучше прорезать по линии раздела сверху и снизу чем-нибудь острым (саморез), а затем аккуратно сломать по ней в тисках. Также рекомендую резак по оргстеклу: 2-3 царапины с двух сторон платы и можно аккуратно отломить. Умельцы делают такие резаки из старых полотен от лобзика.

Компоненты паяются на шелкографию, в том числе лампы. Дорожки остаются на нижней стороне платы. Лампы вставляем белой ногой в помеченное кружочком отверстие. Схема паяется за 20 минут обычным паяльником, все компоненты выводные, припаяет даже новичок.

  • Упаси вас хосподи паять с кислотой или активным флюсом, поверьте, вам это не надо. Всё паяется обычным припоем с флюсом внутри (ПОС-61, китайский SOLDER).
  • После пайки компонентов обязательно отмыть флюс (который вытечет из припоя). В идеале изопропиловым спиртом или калошей, но вполне достаточно будет потереть зубной щёткой под горячей водой.
  • На неотмытую плату питание не подавать! Могут погореть компоненты.
  • Перед первым запуском установить крутилку (потенциометр в верхней части платы) в среднее положение
  • Бутерброд из плат при подключенном питании не собирать/разбирать! Перед снятием/установкой верхней платы обязательно отключите питание. Малейший перекос/лишний дребезг может привести к выгоранию компонентов.
  • Перед пайкой индикаторов на плату желательно проверить их работоспособность, потому что они из Совка и не все отлично сохранились. Нужно взять напряжение с высоковольтной линии платы – схему найдёте чуть выше. Проще всего подпаяться к конденсатору в левой верхней части платы и подать плюс на анод (белая нога лампы) через резистор на 10 кОм, а gnd – на один из катодов, катоды это собственно и есть цифры. Перебрав катоды вы узнаете, все ли цифры работают. Нерабочую цифру в некоторых случаях можно восстановить, повысив напряжение высоковольтной линии. Также для “прожига” лампы можно чуть чуть уменьшить сопротивление токозадающего резистора (10 кОм который), можно влепить подстроечник. Для более точного теста цифр используйте прошивку lamp_test

    Напряжение высоковольтной линии – 140-300 Вольт, держите пальцы подальше от контактов на плате с лампами и от генератора на левой части платы (где катушка и конденсатор). Не убьёт, но тряхнёт знатно! Если держите часы – гарантированно их бросите, и нет гарантий, что они не разобьются.

    По поводу напряжения: его задаёт во-первых резистор (на моей плате подстроечный, вверху в центре), и во-вторых скважность ШИМ сигнала. По умолчанию скважность стоит 180, что уменьшает просадку под нагрузкой. Резистор в оригинальной схеме стоит на 360 кОм, у меня подстроечный на 500 кОм, и я его выкрутил на максимум (170 Вольт). Также на напряжение влияют сами лампы (как нагрузка). Измерять и настраивать напряжение нужно под нагрузкой (со включенными лампами), минимальное напряжение около 130 Вольт (лампы зажигаются), максимальное не должно превышать 175-180 Вольт (это максимум для лампы). Также окисленную (отравленную) лампу можно прожарить, подав на неё бОльшее напряжение (скажем 220-250) на некоторое время. Выбор горящей лампы и цифры появится в прошивке позже. Не забывайте о том, что при питании от USB напряжение 5-ти Вольтовой линии составляет около 4.5 Вольт (часть падает на диоде по питанию Ардуино), поэтому все настройки производить только при подключенном внешнем питании 5 Вольт в соответствующие входы питания на плате (сверху, правее Ардуино).

    Как настроить скетч под другие индикаторы (даже если вы сделали под них свою плату)? Всё очень просто: за порядок цифр отвечает массив digitMask, хранящий в себе соответствие цифры и номера ячейки. Прошиваем тестовый скетч (nixieClock_2_test_v1.1) с настройкой BOARD_TYPE 3. Также пролистайте чуть ниже (ДЛЯ РАЗРАБОТЧИКОВ) до строчки
    #elif (BOARD_TYPE == 3)
    На следующей строчке находится ваш digitMask, который будет активен при BOARD_TYPE 3. Заполните массив цифрами от 0 до 9 в порядке возрастания. Прошейте скетч и запишите куда-нибудь порядок цифр, который покажут часы (10 цифр). Осталось только изменить свой массив digitMask согласно полученной информации. Например:

    Порядок 0123456789
    Часы показали 7491308265

    Тогда ваш digitMask будет строиться так: по порядку чисел на нижней строчке выписываем числа из верхней: 0-5, 1-3, 2-7….
    Получим 5374198062, соответственно byte digitMask[] = <5, 3, 7, 4, 1, 9, 8, 0, 6, 2>;
    Второй важный массив это opts[], отвечающий за порядок индикаторов слева направо, зависит от платы. Если вы переделывали плату, то не составит труда провести аналогию (или методом тыка) и понять, нужен вам 0123 или 3210.
    Также в основном скетче есть cathodeMask, это порядок катодов (цифр) начиная с дальнего от переднего стекла. Его можно посмотреть на картинке из документации по лампе, этот порядок нужен только для эффекта “перебор катодов”.

    4 светодиода подсветки ламп питаются напрямую от пина Ардуино через резистор, ток с пина не превышает допустимых 40 мА. Питать через транзистор я не стал в целях упрощения схемы. Светодиодная точка также питается от пина. Неоновая точка питается от высоковольтной части через оптопару (пятую, на плате NEON DOT).

    Светодиоды подсветки ламп для платы с ИН-14 паяются снизу платы (длинной ногой в круглое отверстие, короткой – в квадратное) и загибаются к отверстиям под лампами. 3мм светодиод вставляется в отверстие (отверстие можно залить термоклеем для лучшего рассеивания света), 5мм светодиод между платами не вмещается, поэтому его можно вдвое укоротить кусачками и затереть напильником. Точно также прислоняется к отверстию и подсвечивает лампу снизу. Также можно использовать SMD светодиод, подпаяв его проводочками и приклеив под отверстие в плате. Светодиоды подсветки ламп ИН-12 паяются сверху платы и наклоняются примерно под 45 градусов к лампе. У лампы непрозрачный задник, подсветить снизу не получится.

    Источник

  • Оцените статью